Résolution d'une equation diff
Répondre à la discussion
Affichage des résultats 1 à 3 sur 3

Résolution d'une equation diff



  1. #1
    invitecfdae1a3

    Post Résolution d'une equation diff


    ------

    Coucou tout le monde.
    J'aimerais résoudre une équation différentielle qui me pose un peu de souci : xy' -y = ln | 1+x | (E)

    Donc il faut calculer la solution générale sur chacun des intervalles où c'est possible et déterminer les solutions maximales.

    Ce que j'ai fait :
    On se place sur un intervalle où le coefficient de y' ne s'annulent pas et où ln |1+x| est définie.
    Donc on travaille sur ]-∞;-1[ , ]-1;0[ , ]0;+∞[

    (E): xy' -y = ln | 1+x |
    (H): xy' -y = 0

    Donc la générale de (H) est assez évidente puisqu'une primitive de 1/x est ln x donc y(x) = C*x

    Puis suivant les intervalles, j'ai essayé de trouver une solution particulière de (E) avec la méthode de la variation de la constante, mais je m'entraine vers des calculs monstrueux ...
    Quelqu'un pourrait-il me guider ?

    Ah oui, j'ai une autre petite question :
    sur ]-∞;-1[ et ]-1;0[ , (E) : xy' - y = ln (-1-x)
    et sur ]0;+∞[, (E) : xy' -y = ln(1+x)
    Je me trompe pas ?

    -----

  2. #2
    invite57a1e779

    Re : Résolution d'une equation diff

    Citation Envoyé par Melanie98 Voir le message
    Puis suivant les intervalles, j'ai essayé de trouver une solution particulière de (E) avec la méthode de la variation de la constante, mais je m'entraine vers des calculs monstrueux ...
    Quelqu'un pourrait-il me guider ?

    Ah oui, j'ai une autre petite question :
    sur ]-∞;-1[ et ]-1;0[ , (E) : xy' - y = ln (-1-x)
    et sur ]0;+∞[, (E) : xy' -y = ln(1+x)
    Je me trompe pas ?
    Sur ce dernier point tu ne te trompes pas.

    Quant à la variation de la constante, je ne vois rien de monstrueux, on cherche les solutions sous la forme , donc , ce qui, reporté dans l'équation différentielle, conduit à et une bête intégration par parties conduit au calcul de ...

  3. #3
    invite7c37b5cb

    Re : Résolution d'une equation diff

    Bonjour

    xy'-y=ln|1+x|; (xy'-y)/x²=1/x²*ln|1+x|;

    (y/x)'=1/x²*ln|1+x|; y/x=int [ln|1+x]/x²*dx

Discussions similaires

  1. Résolution d'une equation diff
    Par inviteb473d51f dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 04/11/2008, 12h42
  2. resolution numerique d'une equa. diff.
    Par invitec35bc9ea dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 13/04/2008, 14h54
  3. Résolution d'une équation
    Par invite13761b79 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 23/02/2008, 11h33
  4. Résolution d'une équa diff
    Par invite4e286845 dans le forum Électronique
    Réponses: 6
    Dernier message: 14/06/2007, 20h32
  5. Résolution d'une équation
    Par inviteac83c744 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 15/10/2006, 17h15