Répondre à la discussion
Affichage des résultats 1 à 22 sur 22

derivee n-ieme d'une fonction composee



  1. #1
    JPouille

    derivee n-ieme d'une fonction composee


    ------

    Bonjour,

    J'ai - malheureusement pour moi - besoin de connaitre la derivee n-ieme d'une fonction composee quelconque, et je m'apercois qu'il ne semble pas y avoir de formule simple... Est ce qu'il y en a une qui existe, meme si elle est tres tres laide??Merci!

    -----

  2. Publicité
  3. #2
    Khadx

    Re : derivee n-ieme d'une fonction composee

    J'ai - malheureusement pour moi - besoin de connaitre la derivee n-ieme d'une fonction composee quelconque, et je m'apercois qu'il ne semble pas y avoir de formule simple...
    Ça ne serait pas une formule de base du genre : mais avec une fonction composée? Sinon, désolé de ne pas être sur la bonne piste!

    -Maxime

  4. #3
    Rincevent

    Re : derivee n-ieme d'une fonction composee

    naïvement je dirais que tu dois pouvoir aboutir à une formule aux allures du binôme de Newton... (avec des dérivées au lieu des puissances)... m'enfin, j'ai réfléchi moins de dix secondes sur ça et sans papier, alors....

    cf. ce qu'il se passe pour la dérivée n-ième d'un produit de fonctions....

  5. #4
    JPouille

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par Rincevent
    naïvement je dirais que tu dois pouvoir aboutir à une formule aux allures du binôme de Newton... (avec des dérivées au lieu des puissances)... m'enfin, j'ai réfléchi moins de dix secondes sur ça et sans papier, alors....

    cf. ce qu'il se passe pour la dérivée n-ième d'un produit de fonctions....
    non... ou alors... enfin, non, en fait il y a bien sur des produits de derivees, mais le nombre de termes dans les produits est "quelconque" (la somme des derivees doit faire n, c'est le seul truc a peu pres clair), et la combinatoire est semble-t-il non triviale. Mais, c'est la question, peut etre que cette difficulte n'est qu'apparente...

  6. #5
    hedron

    Re : derivee n-ieme d'une fonction composee

    C'est comme composer deux séries formelles et (attention il faut que ) ce qui donne :


    bref : c'est affreux

  7. A voir en vidéo sur Futura
  8. #6
    chouket

    Re : derivee n-ieme d'une fonction composee

    Salut,
    Citation Envoyé par JPouille
    Bonjour,

    J'ai - malheureusement pour moi - besoin de connaitre la derivee n-ieme d'une fonction composee quelconque, et je m'apercois qu'il ne semble pas y avoir de formule simple... Est ce qu'il y en a une qui existe, meme si elle est tres tres laide??Merci!
    Je vais peut être sortir un truc débile mais ce que j'essairai de faire c'est de dériver une première fois (u o v) puis une seconde fois et enfin une troisième, puis voir si je peux (en bidouillant un peu) sortir une formule un peu plus générale et vérifier si elle marche par récurrence. Ce n'est qu'une idée en l'air et tu l'a peut être déjà tenté mais je n'ai pas d'autres idées désolé...
    Chouket
    Le coeur le plus sensible à la beauté des fleurs est toujours le premier blessé par ses épines

  9. Publicité
  10. #7
    hedron

    Re : derivee n-ieme d'une fonction composee

    Allez hop, on développe (note : si alors , idem pour )


    Les indices étant . Donc le coeff en de est , somme à prendre sur tous les et tous les n-uplets tels que (tu multiplies par pour obtenir la dérivée). C'est effectivement laid.

  11. #8
    martini_bird

    Re : derivee n-ieme d'une fonction composee

    Salut,

    Citation Envoyé par hedron
    C'est comme composer deux séries formelles et (attention il faut que ) ce qui donne :


    bref : c'est affreux
    Hum... tu es sûr de ton coup?

    J'avais compris qu'il faut chercher une formule pour (uov)(n), non?
    J'ai commencé les calculs:

    (uov)'=v'.u'(v)
    (uov)"=v'²u"(v)+v"u'(v)
    (uov)(3)=v'3u(3)(v)+3v'v"u"(v)+v(3)u'(v)
    (uov)(4)=v'4u(4)(v)+6v'²v"u(3)(v)+3v"²u"(v)+4v'v(3)u"(v)+v(4)u'(v)

    Mais je ne vois pas de méthode pour généraliser

  12. #9
    JPouille

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par martini_bird
    Salut,


    (uov)'=v'.u'(v)
    (uov)"=v'²u"(v)+v"u'(v)
    (uov)(3)=v'3u(3)(v)+3v'v"u"(v)+v(3)u'(v)
    (uov)(4)=v'4u(4)(v)+6v'²v"u(3)(v)+3v"²u"(v)+4v'v(3)u"(v)+v(4)u'(v)

    Mais je ne vois pas de méthode pour généraliser
    N'est-ce pas...
    bon je n'en ai peut etre pas un besoin crucial... m'enfin
    je verrai au retour de vacances

  13. #10
    Korgox

    Re : derivee n-ieme d'une fonction composee

    moi je crois bien que rincevent a donné la solution

    c'est meme assez sur ! il se passe exactement la même chose qu'avec (u+v)^n.

    En tout cas la solution du binôme de Newton est la bonne elle est aussi assez intuitive reste plus qu'à trouver une preuve rigoureuse mais ça doit pas être si dur que ça....

  14. #11
    Korgox

    Re : derivee n-ieme d'une fonction composee

    oui c'est facile.

    on connait (u+v) dérivé n-1 fois. on suppose que c'est de la forme (u+v)^n-1. pour dériver encore une fois on dérive tout par rapport à u et v une fois, ça revient exactement au même (en transposant) que de multiplier par (u+v) donc on a notre récurrence et hop. (l'ancrage est trivial u+v dérivé 0 fois, c'est (u+v)^1, donc y'a juste un décalage entre le nombre de dérivation et la puissance).

    écrivez les chose sur papier là c'est brouillon mais je sais pas utiliser laTex

  15. #12
    martini_bird

    Re : derivee n-ieme d'une fonction composee

    Attention,

    il ne faut pas confondre la dérivée n-ième d'un produit, donnée par la formule



    et la dérivée d'une composition fog=f(g) de deux fonctions!

  16. Publicité
  17. #13
    Azrem

    Re : derivee n-ieme d'une fonction composee

    les personnes intéressées par la dérivée n-ième de la composée f°g, trouveront la réponse dans le Lemme 3.1 de la page suivante:
    http://www.dma.ens.fr/culturemath/ma...derivation.pdf


    PS: âmes sensibles s'abstenir !!

  18. #14
    hedron

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par martini_bird
    Hum... tu es sûr de ton coup?
    J'avais compris qu'il faut chercher une formule pour (uov)(n), non?
    C'est (du point de vue des calculs) équivalent de dériver une composée et de composer des séries formelles.

  19. #15
    Korgox

    Re : derivee n-ieme d'une fonction composee

    Salut,

    oui j'ai dit n'importe quoi

  20. #16
    martini_bird

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par hedron
    C'est (du point de vue des calculs) équivalent de dériver une composée et de composer des séries formelles.
    Pardonne-moi, mais je ne vois pas le lien :confused:

    Si tu as un peu de temps, tu pourrais expliquer sur un exemple, stp?

  21. #17
    martini_bird

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par Azrem
    les personnes intéressées par la dérivée n-ième de la composée f°g, trouveront la réponse dans le Lemme 3.1 de la page suivante:
    http://www.dma.ens.fr/culturemath/ma...derivation.pdf


    PS: âmes sensibles s'abstenir !!
    Sacrée astuce!
    Je pouvais chercher longtemps...

  22. #18
    Gwyddon

    Re : derivee n-ieme d'une fonction composee

    c'est très fort !

    Mais la formule n'en reste pas moins assez... brutale on peut dire
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  23. Publicité
  24. #19
    martini_bird

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par 09Jul85
    c'est très fort !

    Mais la formule n'en reste pas moins assez... brutale on peut dire
    J'imagine bien un exo du style:

    Soit . Démontrer que



    désigne blabla...!!!
    Dernière modification par martini_bird ; 04/03/2005 à 14h31.

  25. #20
    hedron

    Re : derivee n-ieme d'une fonction composee

    Citation Envoyé par martini_bird
    Pardonne-moi, mais je ne vois pas le lien :confused:

    Si tu as un peu de temps, tu pourrais expliquer sur un exemple, stp?
    Pas de problème. Je vais expliquer, mais pas sur un exemple (désolé).
    Je veux calculer .
    Formule de Taylor pour g en x_0 :
    Puis formule de Taylor pour f en g(x_0) :
    On remplace alors y :
    Puis formule de Taylor pour en :
    Yapuka identifier les coefficients.
    Je vais écrire un exemple.

  26. #21
    hedron

    Re : derivee n-ieme d'une fonction composee

    IE6 n'a pas supporté tant d'inélégantes formules, il m'a rendu l'âme pendant que j'écrivais l'exemple... On recommence (dans la joie)
    Exemple (j'augmente la taille, non pour crier mais pour qu'on voie les couleurs) :
    g(3+x)=7-2x+3x^2+...
    f(7+y)=2+5y-6y^2+...Alors
    f(g(3+x))=2+5(-2x+3x^2+...)-6(-2x+3x^2+...)^2+...
    =2+(-10x+15x^2+...)+(-24x^2+...)+...
    =2-10x-9x^2+...

    Donc la dérivée de f rond g est -10 et la dérivée seconde -9/2, etc...

  27. #22
    martini_bird

    Re : derivee n-ieme d'une fonction composee

    Merci,

    j'y vois plus clair désormais.

Sur le même thème :

Discussions similaires

  1. Dérivation d'une fonction composée
    Par Bleyblue dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 05/04/2007, 20h37
  2. Dérivé d'une fonction composée
    Par Phoenix369 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 03/11/2006, 16h36
  3. Fonction réciproque d'une fonction composée ??
    Par Gucci-style dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 06/10/2006, 23h33
  4. Dérivée de fonction composée
    Par khroms dans le forum Mathématiques du supérieur
    Réponses: 28
    Dernier message: 23/11/2005, 18h35
  5. derivée de fonction composée ,hum!!
    Par linet dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 05/10/2005, 18h11