Bonjour,
Dans une démonstration je suis tombé sur le passage suivant :
avec x un réel tel que
Pour justifier ce passage je dois montrer que la série converge uniformément pour tout t appartenant à [0,1].
OR pour t = 1/2 ce n'est pas le cas.
Cependant j'ai la convergence uniforme sur tout compact.
Est-ce suffisant ? Il me semble que non, le théorème affirmant que l'ont peut permuter sommation et intégration ne le mentionnant pas ...
merci
-----