Bonjour, j'ai rencontré un petit problème dans un exercice sur les séries de Fourier :
On considère une fonction g, paire, periodique de periode 2Pi, et definie entre 0 et Pi par
g(x) = Pi si 0 ≤ x ≤Pi/2
= 2(Pi − x) si Pi/2≤ x ≤ Pi .
1. En tracer sommairement le graphe pour −Pi ≤ x ≤ Pi.
2. On se propose de calculer le d´eveloppement de Fourier de cette fonction (voir rappels ci-dessous). Que peut-on
dire a priori des coefficients an et bn et de leur comportement asymptotique ?
Pour le graphe c'est bon par contre la correction du 2 me pose problème : elle dit que bn=0 car la fonction est impaire, la je suis d'accord. Par contre elle dit que puisque g estcontinue et non dérivable (pourquoi???), en l'infini an~1/n^2.
Voila je ne comprends pas -la conclusion pour an
-le fait que g ne soit pas dérivable, car on peut dériver la série de fourier puisque dans la suite de l'exo on voit qu'elle converge uniformément.
Merci pour votre aide
-----