La seconde limite ne tend vers rien du tout et la première tend vers zéro.
?
Effectivement. J'avais regardé un peu vite.
x tang(1/x) va à l'infini de manière dense près de 0 (pour chaque 1/(1/2+n pi). Risque pas d'avoir une limite.
C'est pas la limite à l'infini qu'on te demande, par hasard?
Cordialement,
28/10/2005, 14h14
#7
invite4e552635
Date d'inscription
janvier 1970
Messages
78
Re : Quelques limites
NoNoNo ... c'est bien ca le problème, si on tape sur une calculatrice, on remarque q'au voisinnage de 0, x tan(1/x) converge vers 0, or je n'arrive pas à le retrouver par le calcul.
28/10/2005, 14h38
#8
invite19415392
Date d'inscription
janvier 1970
Messages
520
Re : Quelques limites
Je te conseille de relire le post de mmy : pour tout intervalle autour de zéro, tu as une infinité de points tels que f : x -> x.tan(1/x) ne soit pas définie (et tende vers l'infini, de façon alternativement positive et négative).
La fonction ne peut pas converger vers 0 dans ces conditions.
30/10/2005, 11h26
#9
invite4e552635
Date d'inscription
janvier 1970
Messages
78
Re : Quelques limites
Après avoir vérifié et revérifier, la calculatrice persiste à montrer que lorsque x tend vers 0 (car la question demande bien quand x tend vers 0 et non +/- infini), alors x.tan(1/x) tend vers 0.