fonction zeta
Répondre à la discussion
Affichage des résultats 1 à 20 sur 20

fonction zeta



  1. #1
    maxwellien

    fonction zeta


    ------

    Bonjour, en ce qui concerne la fonction zeta de rieman j' ai du mal à comprendre la conjecture associée (l'histoire des zéros isolés).
    Si quelqu'un pourait m'éclairer merci.

    -----

  2. #2
    invite57a1e779

    Re : fonction zeta

    Il n'y a rien de compliqué : on démontre qu'il existe une (unique) fonction définie sur C privé de 1, analytique, et telle que, pour : .

    On prouve que cette fonction s'annule pour les entiers pairs strictement négatifs : .

    On prouve que cette fonction s'annule une infinité de fois dans la bande «critique» : .

    La conjecture concerne la position des points où s'annule dans la bande critique.

  3. #3
    invite4118db1e

    Re : fonction zeta

    Bonjour,

    La conjecture dit que les zéros non triviaux (ceux qui ne valent pas un entier négatif), ont tous une partie réelle égale à ½. Pas facile à démontrer !!

    Il y a un très bon article sur le sujet dans « les dossiers de pour la science » de ce mois-ci, n° 74, consacré aux mathématiques.

    A+ MZ

  4. #4
    maxwellien

    Re : fonction zeta

    Bonjour, alors si j'ai bien compris cette fonction s'annule pour s (complexe) ayant partie réelle pair et stictement négatif et partie imaginaire quelquonque.
    Pour les zéro non triviaux qu'importe la partie imaginaire si la partie réelle égale 0,5 qu'importe la parti imaginaire la fonction zeta égale zéro.
    C magnifique!!

  5. A voir en vidéo sur Futura
  6. #5
    invite4118db1e

    Re : fonction zeta

    Bonjour,

    C’est presque ça à quelques détails près :
    - Les zéros triviaux ont une partie réelle paire strictement négative et une partie imaginaire nulle,
    - Les autres zéros auraient (selon la conjecture de Reimann) une partie réelle valant ½, on ne dit rien de la partie imaginaire,
    - Enfin zéta ne s’annule pas pour toute valeur de z=1/2 + iy, en général la somme diverge dans cette zone dite critique.

    A+ MZ

  7. #6
    invited73f5536

    Re : fonction zeta

    Bonjour,

    en général la somme diverge dans cette zone dite critique.
    Quel rapport avec la divergence de la série ?

  8. #7
    invitec255c052

    Re : fonction zeta

    La fonction zéta de riemann s'annule pour tous les entiers négatifs pairs (-2,-4,-6,-8, etc) qu'on appelle "zéros triviaux", et elle s'annule pour une infinité de nombres complexes z=0,5 +iy et symétriquement pour z=0,5-iy
    Riemann a conjecturé que TOUS les zéros non triviaux de zéta, étaient situés sur la droite x=0,5
    On a démontré qu'une infinité de ces zéros étaient situés sur x=0,5, mais on n'a pas démontré qu'ils étaient TOUS sur x=0,5
    (une comparaison pour comprendre : l'ensemble des entiers pairs est infini, mais l'ensemble des entiers est plus grand).

  9. #8
    maxwellien

    Re : fonction zeta

    Bonjour, j'aimerai avoir la démonstraton qui permet de dire que tous les entiers négatifs pairs associé à Zéta donne O.
    Merci d'avance.

  10. #9
    invite57a1e779

    Re : fonction zeta

    Cela découle immédiatement de la relation fonctionnelle :



    Lorsque est un entier négatif pair, , le facteur en sinus est nul.

  11. #10
    maxwellien

    Re : fonction zeta

    Je ne comprend pas vraiment du moins d'où ça sort si vous aurez une démonstration plus détaillée ça serait mieux.
    Merci

  12. #11
    invited73f5536

    Re : fonction zeta

    Qu'est-ce que tu ne comprends pas ? D'où vient la formule citée par God's Breath ? Ou comment l'appliquer pour trouver les zéros triviaux ?

    La formule est loin d'être une trivialité, tu devrais plutôt jeter un coup d'oeil sur un cours sur la fonction zeta.

  13. #12
    maxwellien

    Re : fonction zeta

    Bonjour, oui un cours complet et détaillé serait le bienvenu
    Merci

  14. #13
    invite0fa82544

    Re : fonction zeta

    Citation Envoyé par maxwellien Voir le message
    Bonjour, oui un cours complet et détaillé serait le bienvenu
    Merci
    Complet, non, un peu détaillé, oui : http://fip.phys.ens.fr/spip.php?rubrique57
    Complet, oui : le superbe livre de Titchmarsh

  15. #14
    invite4793db90

    Re : fonction zeta

    Salut,

    je ne connais pas le livre de Titchmarsch, mais il y a aussi le livre d'Edwards. Et bien sûr l'article original de Riemann, qui n'a pas vieilli et que l'on peut trouver en ligne.

    Cordialement.

  16. #15
    breukin

    Re : fonction zeta

    Quelques grandes lignes pour la démonstrations de cette formule :

    On part de :
    valable pour
    et de :
    valable pour

    Par une manipulation de type inversion sommation / intégrale, et changement de variable , on arrive à :
    valable pour

    L'idée est ensuite d'évaluer l'intégrale suivante :

    parcourt un contour dans le plan complexe muni d'une coupure constituée du demi-axe réel positif (donc tout complexe peut y être écrit sous la forme unique avec ), le contour allant de en suivant la droite réelle en son dessus jusqu'à (assez petit : , contournant complètement selon un cercle parcouru dans le sens direct, puis revenant à en suivant la droite réelle en son dessous.

    On a alors :


    Sachant que l'expression de gauche ne dépend pas de dès lors qu'il est suffisamment petit pour que le contour n'englobe pas de pôle, cette expression de gauche pour un donné est égale à la limite de l'expression de droite quand tend vers 0.
    Or cette limite est

    Tous calculs faits, on arrive à :


    Or l'intégrale de droite est définie dans tout le plan complexe (et est indépendante de ) : c'est un prolongement analytique de

    En particulier, si , on peut l'appliquer à et l'on trouve que :


    Ensuite, on considère l'intégrale de la fonction apparaissant sous cette dernière intégrale, mais sur le contour allant de à au dessus de l'axe réel, puis contournant 0 dans le sens direct pour revenir à ce point au-dessous de l'axe réel, puis parcourant le segment précédent dans le sens opposé sous l'axe réel, et rejoignant le point initial en contournant 0 dans le sens indirect.
    Cette intégrale est égale à la somme des résidus, d'une part, et d'autre part, en faisant tendre vers l'infini, l'intégrale le long du cercle de rayon tend vers 0, tandis que le reste tend vers l'expression en fonction de .
    Il ne reste qu'à calculer les résidus, et là, miracle, on fait apparaître la série de Riemann en (à cause du et des pôles en dont il faut soigneusement calculer les résidus sans se tromper : les pôles doivent être écrits comme et avant de les élever à la puissance ).

    PS Il se peut qu'une erreur de signe se ballade...
    Dernière modification par breukin ; 09/01/2012 à 23h57.

  17. #16
    invite4793db90

    Re : fonction zeta

    Salut,

    ceci est essentiellement la première démonstration que Riemann donne de l'équation fonctionnelle. La seconde (contenue dans le même article) utilise la modularité d'une fonction theta.

    Cordialement.

  18. #17
    fevil

    Re : fonction zeta

    J'aimerais savoir avec certitude sur le premier billion testé s'il y a eu un quelconque zero non trivial qui ne soit pas sur 1/2.

    Si oui existe t il un document discutant ce zero ?

  19. #18
    gg0
    Animateur Mathématiques

    Re : fonction zeta

    Bonjour.

    La réponse est évidemment non, puisque cela aurait réfuté la conjecture.

    Cordialement.

  20. #19
    fevil

    Re : fonction zeta

    Quelque chose doit m'echapper.

    http://eljjdx.canalblog.com/archives...3/9045423.html

    """
    La fonction semble cependant s'annuler en d'autres points, et on suppose que ces points ont une partie réelle à ½. La question de l'hypothèse est là : montrer que tous les points où s'annule la fonction zêta ont une partie réelle égale à ½.
    C'est à dire, si ζ(x+iy)=0, alors x=1/2 (ou x=-2n et y=0)

    Ce que l'on sait, pour l'instant, c'est qu'il y a une infinité de zéros non triviaux, et que leur partie réelle est entre 0 et 1. On sait quand même que au moins un tiers des zéros non triviaux ont bien la partie réelle égale à 1/2.
    Expérimentalement, il a été vérifié que l'hypothèse est vraie (aux erreurs de calcul près, un ordinateur ne peut représenter les nombres réels de manière exacte) pour les 1 500 000 000 premiers zéros non triviaux. Mais ça ne le justifie pas pour tous !"'"

  21. #20
    gg0
    Animateur Mathématiques

    Re : fonction zeta

    je ne comprends pas ton problème : Tous les zéros non triviaux dont on a pu tester la partie réelle sont (aux erreurs d'approximation des calculs près) sur la droite des nombres complexes de partie réelle 1/2. On ne peut évidemment rien dire pour les autres. On sait qu'une proportion importante des zéros non triviaux ont une partie réelle égale à 1/2, mais ça ne dit rien des autres.
    Et bien sûr, si on trouvait un zéro non trivial dont la partie réelle n'est pas 1/2, la conjecture (**) serait simplement fausse. "ça ne le justifie pas pour tous"

    Cordialement.

    (**) Ce n'est toujours qu'une conjecture, une propriété mathématique non démontrée, mais dont on n'a pas démontré qu'elle est fausse. Parler "d'hypothèse" est d'ailleurs malsain.

Discussions similaires

  1. la fonction zêta
    Par invitec2174952 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 21/07/2011, 14h31
  2. fonction 1/zeta
    Par acx01b dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 05/11/2010, 02h33
  3. Fonction Zeta
    Par invite2f664770 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 17/06/2010, 00h52
  4. fonction zeta de Riemann
    Par invitef8bd6408 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 20/04/2010, 15h16
  5. Fonction zeta de Riemann
    Par invite9de87710 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 23/10/2005, 22h20