Bien le bonsoir !
La quantité de mouvement d'un objet (notée p)peut être calculée en faisant masse de l'objetxvitesse de l'objet.
Et la force exercée sur l'objet est
Je coince quand on tente d'appliquer ça :
Le coeur humain pompe 57g de sang en 0,1 sec et le coeur communique à ce sang une vitesse de 0,5 m/s
Donc très logiquement p=0,057x0,5=0,0285
Quelle est la force exercée sur le coeur ?
La résolution nous donne 0,0285/0,1
dp=0,0285
dt=0,1
Et là je suis complètement largué ! dp=0,0285 ??? dt=0,1
??? Mais qu'est ce que c'est que ce truc ???
La notation dp/dt ca veut quand même dire que l'on dérive l'équation p en considérant le t comme une variable ? Depuis quand dt=0,1 ? et dp=p ???
Je vous prie d'être humble avec moi car j'ai vu les dérivées comme tout le monde en secondaire et je sais très bien les appliquer, mais depuis que je suis à l'université on utilise des dérivées et des intégrales tout le temps de manière que je n'ai jamais vues comme ici... En fait j'ai apparemment une lacune dans le fondement même des dérivées et des intégrales... C'est quoi une dérivée ???
On m'a dit quand j'ai tenté d'expliquer mon problème sur place, que dt était une partie "infinitésimale"... J'ignore de quoi il s'agit...
-----