Bonjour
J'ai trouvé ce texte sur le net:
Il y est indiqué que G est une algèbre de Lie.3.3 Schur’s Lemma
Let G be a Lie algebra and ρ1 and ρ2 two representations of G.
ρ1 : G → End(V1 )
ρ2 : G → End(V2 )
Let f : V1 → V2 be an intertwiner from V1 to V2 . ( recall (ρ2 (x) ◦ f ) = (f ◦ ρ1 (x)), ∀x ∈ G )
Lemma: ker(f ) ⊆ V1 and im(f ) ⊆ V2 are both intertwiner subspaces.
Proof: Given x ∈ G, let v1 ∈ ker(f ). We want to show that ρ1 (x)(v) ∈ ker(f ). We have
f (ρ1 (x)(v1 )) = ρ2 (x)(f (v1 )) = 0
Therefore ρ1 (x)(v1 ) ∈ ker(f).
Let v2 ∈ im(f ). There exists v1 ∈ V1 such that f (v1 ) = v2 . We have
ρ2 (x)(v2 ) = ρ2 (x)(f (v1 )) = f (ρ1 (x)(v1 )) ∈ im(f )
Therefore ρ2 (x)(v2 ) ∈ img(f ).
Theorem: Schur’s Lemma
• Let f : V1 → V2 be an intertwiner between irreducible representations, then f = 0 or f is bijective.
• If f : V1 → V1 is an intertwiner of a complex irreducible representation on V1 , then f = λ · idV1 for
some λ ∈ C.
• If f1 , f2 : V1 → V2 are two intertwiners between complex and irreducible representations on V1 and
V2 , then f1 = λ · f2 for some λ ∈ C.
Proof:
• ker(f ) is an invariant subspace of ρ1 on V1 since V1 is an irreducible representation. We have
ker(f ) = {0} (in which case f in injective) or ker(f ) = V1 (in which case f = 0). im(f ) is invariant
in V2 , from which we get im(f ) = V2 (in which case f is surjective) or img(f ) = {0} (in which case
f = 0). In total, we have f = 0 or f is bijective.
J'aimerais savoir si ce qui est écrit est aussi vrai pour des représentations de groupes de Lie.
En cherchant un peut j'ai trouvé les lemmes ou théorèmes de Schur pour des groupes finis.
Ils sont vrais aussi au delà de ceux ci?
-----