Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Mq une fonction est injective en DF



  1. #1
    Romain-des-Bois

    Mq une fonction est injective en DF


    ------

    Bonjour à tous,

    je me pose une question sur la justesse d'un raisonnement.

    J'ai un endo f qui va de E vers F (E et F sont différents donc mais tous deux de dimension finie).

    Est-ce que montrer que le noyau de f se réduit à 0_E (l'élément nul de E) suffit pour dire qu'elle est injective ?

    (sinon pourquoi bien sûr !)

    merci par avance

    Romain

    -----

  2. Publicité
  3. #2
    GuYem

    Re : Mq une fonction est injective en DF

    Salut.

    Ca suffit, et ce même si les deux espaces n'ont pas la même dimension (et même en dimension infinie)

    Pour t'en convaincre prend x et y tel que f(x) = f(y) et regarde f(x-y) ...
    Bravo jolie Ln, tu as trouvé : l'armée de l'air c'est là où on peut te tenir par la main.

  4. #3
    g_h

    Re : Mq une fonction est injective en DF

    Salut,

    En effet, ça marche très bien, mais par contre f n'est pas un endomorphisme !

  5. #4
    Romain-des-Bois

    Re : Mq une fonction est injective en DF

    Et bien merci pour vos réponses si précises et si rapides (je suis étonné à chaque fois !!!)

    Effectivement, f n'est pas un endo (au début je voulais dire que la source et le but étaient identiques mais en fait non...) !

    En fait, j'ai fait comme ça en DS, et je voulais me persuader que j'avais bien fait...

    Bon, ben merci beaucoup à tous les deux

    Romain

  6. A voir en vidéo sur Futura
  7. #5
    rvz

    Re : Mq une fonction est injective en DF

    Citation Envoyé par GuYem
    Salut.

    Ca suffit, et ce même si les deux espaces n'ont pas la même dimension (et même en dimension infinie)

    Pour t'en convaincre prend x et y tel que f(x) = f(y) et regarde f(x-y) ...
    Oui, on peut même rajouter que c'est équivalent, d'ailleurs, là encore en toute dimension.

    __
    rvz

Discussions similaires

  1. Démontrer qu'une fonction est injective ...
    Par Bleyblue dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 20/02/2010, 10h47
  2. Fonction injective
    Par bastien83 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 07/10/2007, 12h02
  3. montrer qu une fonction n est jamais nulle
    Par flo69 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 23/09/2007, 12h25
  4. Est-ce que cette fonction adment une limite ?
    Par oliparcol dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 31/03/2007, 14h30
  5. fonction injective
    Par Brikkhe dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 11/09/2005, 14h21