Ce n'est pas si illogique que cela puisque les termes diagonaux ne jouent pas tout à fait le même rôle que les termes croisés.Le pascal est une unité de pression et de contrainte .
Le cisaillement est une contrainte* .
Il serait illogique que les termes de la matrice des contraintes aient des unités différentes .
http://www.bipm.org/fr/publications/...re/table3.html
*à ne pas confondre avec la sollicitation .
S'il y a un moment, quelque chose fera potentiellement un tour, un degré ou un radian...
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
Le début de la discussion était intéressant. Maintenant cela répète ce qui a été écrit je ne sais combien de fois dans des discussions plus anciennes (et souvent par les mêmes intervenants).
Dommage, car le premier message aurait pu faire de cette discussion quelque chose de mieux que ce qu'on voit maintenant.
Ce sujet (en général), à l'image d'un certain nombre d'autres, reste curieux par ces débats en opposition, ces positions qui n'évoluent pas, ces dialogues de sourd, ces incapacités d'examiner les arguments "adverses", cette absence de tentative de synthèse. Et cette propension à débattre de points qui ne sont pas vraiment le sujet (qui est plutôt, en prenant le premier message, dans l'opinion "le jeu n'en vaut pas la chandelle").
Le papier cité dans le message #1 montre bien autre chose. Bref, pour le lecteur de passage, une bonne suggestion serait de lire le papier, et d'oublier cette discussion sauf le tout premier message.
Dernière modification par Amanuensis ; 08/08/2016 à 08h45.
Pour toute question, il y a une réponse simple, évidente, et fausse.
La réalité, c'est ce qui reste quand on cesse de croire à la matrice logicielle.
Remarque de type "jugement de valeur", assez amusante car on ne sait pas quel côté est visé par ce procès en incohérence (si c'est bien le sens à prendre pour "consistance", i.e., l'anglicisme plutôt que le français-tel-qu'on-le-causait-il-n'y-a-pas-si-longtemps)..
(Perso j'ai une tendance à remplacer souvent thèse/antithèse/synthèse par naïveté/rébellion/compréhension (avec comprendre pour "prendre ensemble"), et aussi par "affirmation/négation/négation de la négation", à la Hegel (en comprenant que négation de la négation est argumentée comme telle et non pas une simple ré-affirmation ad nauseam de l'affirmation-- ce qu'on voit principalement ici). Ce qui mettrait la thèse comme étant l'idée que le radian est une unité pour une grandeur sans dimension.)
Dernière modification par Amanuensis ; 08/08/2016 à 13h29.
Pour toute question, il y a une réponse simple, évidente, et fausse.
Quelque chose qui abonde dans ton sens ?
Mais qui n' apparaît pas dans la définition du moment .
D' après la définition du moment :
W = (OPΛF)*θ
_OP est un bipoint (position de P par rapport à O) dimension longueur .
_OPΛF est le moment de F en O , il n' y a pas d' angle dans cette définition , la dimension est F.L
_θ est un vecteur angle (on peut le remplacer par (n.θ) pour ceux qui seraient choqués pas le "vecteur angle")
_(OPΛF)*θ est un double produit , on peut donc permuter les termes et obtenir :
W = (OPΛF)*θ = (θΛOP)*F = L*F
L' angle a disparu et la dimension du travail est la même qu' en translation .
c'est là tout le problème. L'angle a disparu, comme par magie. Et le faire disparaitre ici ou apparaitre là est arbitraire. Le fait de ne pas le mettre dans un moment de force est arbitraire. C'est cet arbitraire qui pose problème. Il n'y a pas de logique. Il y a juste un usage. Usage défendu bec et ongle par certains "parce que c'est comme ça et parce que le BIPM a dit ci ou ça" et remis en cause par d'autres qui voudraient plus de logique. Les premiers ont des oeillères et refusent de voir qu'il y a un problème avec la notion d'angle, les seconds crient bien souvent dans le désert. Cependant, les nombreuses tentatives pour rendre l'ensemble cohérent et logique (dont ce SI+ fait partie) ne semblent jamais entièrement satisfaisante.L' angle a disparu et la dimension du travail est la même qu' en translation .
m@ch3
Never feed the troll after midnight!
Bah oui, j'ai initié ce fil dans l'espoir de pouvoir discuter.c'est là tout le problème. L'angle a disparu, comme par magie. Et le faire disparaitre ici ou apparaitre là est arbitraire. Le fait de ne pas le mettre dans un moment de force est arbitraire. C'est cet arbitraire qui pose problème. Il n'y a pas de logique. Il y a juste un usage. Usage défendu bec et ongle par certains "parce que c'est comme ça et parce que le BIPM a dit ci ou ça" et remis en cause par d'autres qui voudraient plus de logique. Les premiers ont des oeillères et refusent de voir qu'il y a un problème avec la notion d'angle, les seconds crient bien souvent dans le désert. Cependant, les nombreuses tentatives pour rendre l'ensemble cohérent et logique (dont ce SI+ fait partie) ne semblent jamais entièrement satisfaisante.
m@ch3
Mais on peut juste rien faire avec les deux trolls là...
Cela dépend de la définition du moment .
Si on se contente de le définir à partir de la force et du bras de levier , il n' y a pas d' angle dans la définition de ces grandeurs .
Si on le définit à partir du travail qu' il peut (ou pas) produire , on fait apparaître un angle .
La théorie généralement admise .
Celle dont on peut discuter sur un forum de vulgarisation sans risquer de voir apparaître de la prose en vert
Surtout qu'il faut mettre un contexte à "satisfaisant". Si on voit comme contexte l'enseignement, la formation de techniciens, d'ingénieurs, etc., l'approche "officielle" peut être vue comme "satisfaisante".
Paraît plus intéressant de comprendre en quoi les tentatives ont un sens (et peuvent amener à un ensemble cohérent, opinion qui diffère de celle implicite dans la citation ci-dessus), ce qui demande de commencer par les comprendre; et de réaliser qu'elles ne donnent pas des résultats acceptables pour remplacer l'approche officielle, et pourquoi. Double effort de compréhension...
Pour toute question, il y a une réponse simple, évidente, et fausse.
La réalité, c'est ce qui reste quand on cesse de croire à la matrice logicielle.
L' aspect scalaire ou vectoriel d' une grandeur n' apparaît pas dans les unités .
Dans FΛL , L n' a pas une dimension longueur ?
On m' aurait donc mentit ?
Et non!
Il faut que ce soit des radians, sinon, c'est un peu indémerdables avec les pi/180 numériques qui apparaissent un peu partout.
Je ne sais pas trop qui tu traites de trolls, mais j'estime avoir argumenter le point de vu SI+angle.
Tu souhaiterais que les "pour" ce SI+ fassent l'inventaire des problèmes que pose ce SI+?
Problème dans l'enseignement , problème au niveau théorique?
C'est ton fil et tu boudes : J'avoue ne pas comprendre.
Si tu préfères ne pas discuter avec moi, je n'interviendrai plus et me contenterai de lire ce qui se dira sur un sujet qui m'intéresse.
@ Amanuensis : Il faut bien reconnaitre qu'on n'est pas bien fort en synthèse sur Futura. Il faudrait faire évoluer la FAQ. Je manque de courage et de temps...
Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».
Pour les élèves bien scolaires, c'est sûr qu'il n'y a pas de problème. Par contre pour ceux qui cherchent les petites bêtes, ça peut être extrêmement frustrant voire excluant... Ca peut être parfois compliqué pour l'enseignant aussi, mais bon, on va sortir du sujet.Si on voit comme contexte l'enseignement, la formation de techniciens, d'ingénieurs, etc., l'approche "officielle" peut être vue comme "satisfaisante".
On n'est pour moi pas sur le même plan que la remise en cause de la relativité, de la mécanique quantique, ou de l'affirmation d'une possibilité de mouvement perpetuel ou que sais-je encore. Les théories physiques ne dépendent pas du système d'unité utilisé (à la rigueur certaines formules changent de tête, mais c'est analogue à un effet de perspective). C'est la cohérence du système d'unité qui est discuté ici, pas celle d'une théorie qui l'utilise. Par ailleurs ce système d'unité est régulièrement amendé (il n'y a qu'à voir les publications du BIPM) et il est justement sain à mon avis que les utilisateurs s'exprime quant à sa cohérence. Il y a d'ailleurs des articles dans des revues à comité de lecture sur le sujet, on est donc pas dans le cadre de la "théorie personnelle".La théorie généralement admise .
Celle dont on peut discuter sur un forum de vulgarisation sans risquer de voir apparaître de la prose en vert
m@ch3
Never feed the troll after midnight!
Ce que je comprends pas, c'est que ça s'enseigne au collège si je me souviens bien, mais au collège on ne connaît pas encore le radian, on exprime donc le moment de force en N.m/°, non ?
Quand on dit qu'on multiplie la force par le bras-de-levier, il faut comprendre évidemment "par le facteur de bras-de-levier", en m/°. Pas par la longueur du bras, lol !
Car l'effet de levier permet de transformer une force linéaire (travail par unité de longueur) en force angulaire (travail par unité d'angle).
On vous a donné le radian pour vous faciliter les calculs, vous avez tout saboté au niveau physique le plus basique.
Dernière modification par Nicophil ; 08/08/2016 à 16h44.
La réalité, c'est ce qui reste quand on cesse de croire à la matrice logicielle.
Un poil plus subtil: le "facteur de bras de levier" est l'opération "ΛL". L est bien une longueur, et "Λ" appliqué à L donne l'opérateur "bras de levier". C'est "Λ" qui donne le /°.
C'est en analysant en profondeur ce soit-disant "produit vectoriel" qu'on peut arriver à quelque chose de cohérent.
Il est d'ailleurs assez surprenant que les élèves (et pas seulement) acceptent sans broncher l'idée que le produit vectoriel soit un produit interne, comme son nom incite à croire (comparer à "produit scalaire") ; il est clair que le résultat du produit vectoriel de deux vecteurs longueurs ne peut pas être un vecteur longueur, comme ce serait le cas si c'était une opération interne (comme l'addition par exemple). Refuser le statut d'opération interne amène à réfléchir sur la nature des espaces concernés, ce qui est facile en tensoriel, et peut être traduit en une notion d'opérateur, comme ci-dessus.
---
C'est en fait un exemple de "gymnastique" pas évidente, et on peut comprendre pourquoi elle n'est ni enseignée, et autre.
Dernière modification par Amanuensis ; 08/08/2016 à 17h03.
Pour toute question, il y a une réponse simple, évidente, et fausse.
Non , pas du tout .
Il n' y a pas besoin d' angle dans la définition du moment .
C' est quoi cette histoire de force linéaire et de force angulaire ?
Style "new science" comme dans le lien de ton post #52
Comme je l' ais dit précédemment , c' est une question de définition .
L' angle n' apparaît du fait que tu veux définir la force à partir du travail .
Doit on définir la force à partir du travail ou le travail à partir de la force ?
Attention, en France on note le produit vectoriel avec un wedge ce qui peut porter à confusion avec le produit externe, dont le symbole est bel et bien un wedge.
Ce qui entre dans la définition d'un moment est un produit vectoriel, pas un produit externe.
Il faut partir de l'action et à partir de là :
- translation : densité linéaire
- rotation : densité angulaire, tout ce qui est appelé "moment de...".
Le moment de force n'est jamais que la variation temporelle du "moment angulaireL' angle n' apparaît du fait que tu veux définir la force à partir du travail .
angulaire
angulaire".
Dernière modification par Nicophil ; 08/08/2016 à 17h36.
La réalité, c'est ce qui reste quand on cesse de croire à la matrice logicielle.
...le produit vectoriel ou l'arbre qui cache la forêt... Vu que le produit vectoriel de deux vecteurs ne se comporte pas comme un vecteur vis-à vis d'un changement de base, j'ai du mal à y voir un produit interne de toutes façons. Le produit vectoriel n'est qu'une façon de planquer sous le tapis des concepts algébriques qu'on n'a pas envie de regarder en face parce que "trop compliqués" (Oh mon dieu!! un tenseur! planquez vous! ). C'est là que ceux qui sont parvenus à imposer cette notation en France ont été (volontairement??) malins (sournois?), choisir le même symbole pour le produit vectoriel et le produit extérieur pour qu'on les confondent encore mieux!Attention, en France on note le produit vectoriel avec un wedge ce qui peut porter à confusion avec le produit externe, dont le symbole est bel et bien un wedge.
Ce qui entre dans la définition d'un moment est un produit vectoriel, pas un produit externe.
m@ch3
Never feed the troll after midnight!
Faut pas exagérer... Y a rien de très compliqué. Tout ça est bien formalisé, y a pas de "flou".
Que ce ne soit pas enseigné est une autre histoire.
Re.
Le moment d’une force n’a pas besoin de mouvement.
Il peut être parfaitement statique.
Par exemple, le couple que le poids du pendu exerce sur la potence.
C’est bêtement le produit de la force par son bras de levier. Pas besoin de hautes mathématiques pour le définir. Même le plus analphabète des mécaniciens sait comment maximiser le couple.
A+
je ne me souviens pas avoir dit "flou".Tout ça est bien formalisé, y a pas de "flou".
m@ch3
Never feed the troll after midnight!
Et il n'y a pas de flou: la formalisation du "produit vectoriel" via le produit externe et la dualité de Hodge n'est pas floue du tout, et se retranscrit très bien en "cachant" le substrat. Et lequel est le substrat, lequel le "spécialisé" ne souffre pas d'ambiguïtés: le produit externe est général à toutes les dimensions.
Que ce soit historiquement le contraire est correct, mais est-ce bien un argument quand on veut comprendre le fond? Or c'est un passage obligé si on cherche à creuser l'opportunité ou non d'une grandeur d'angle.
Dernière modification par Amanuensis ; 08/08/2016 à 18h50.
Pour toute question, il y a une réponse simple, évidente, et fausse.
Magnifique, je découvre l' "angulation" ou débattement angulaire : https://fr.wikipedia.org/wiki/Levier...n.C3.A9matique
Bref, c'est la quantité de rotation (ou gyration). En fait, "moment angulaire" est redondant... Les anglophones parlent de momentum angulaire.
Leur momentum linéaire étant notre "quantité de mouvement" (sous-entendu de translation).
L'impulsion angulaire (delta de momentum angulaire) est une densité angulaire d'action, l'impulsion linéaire (delta de momentum linéaire) est une densité linéaire d'action.
La réalité, c'est ce qui reste quand on cesse de croire à la matrice logicielle.