dimension de l'equation de schrodinger - Page 2
Répondre à la discussion
Page 2 sur 2 PremièrePremière 2
Affichage des résultats 31 à 43 sur 43

dimension de l'equation de schrodinger



  1. #31
    coussin

    Re : dimension de l'equation de schrodinger


    ------

    Citation Envoyé par MiPaMa Voir le message
    Non, voir ici.
    On joue sur les mots… Le V dans le lien que vous citez est le potentiel d'interaction entre particules. On peut le prendre à zéro pour un condensat sans interaction. On se retrouve avec seulement le terme en |psi|^2 qu'on identifie à un potentiel.

    -----

  2. #32
    invite47ecce17

    Re : dimension de l'equation de schrodinger

    Qu'est ce que ca veut dire "identifies" à un potentiel?
    On peut choisir d'appeler ca potentiel (en maths on appelle potentiel tout un tas de chose par exemple). Mais ton "operateur" \psi->|\psi|²\psi, ne correspond pas a un observable et en particulier dans l'equation de schrodinger, ou le \hat V est un observable. On ne peut avoir ce "potentiel" en \psi^3.

  3. #33
    Amanuensis

    Re : dimension de l'equation de schrodinger

    Citation Envoyé par coussin Voir le message
    On joue sur les mots… Le V dans le lien que vous citez est le potentiel d'interaction entre particules. On peut le prendre à zéro pour un condensat sans interaction. On se retrouve avec seulement le terme en |psi|^2 qu'on identifie à un potentiel.
    Le jeu sur les mots est sur "observable". L'équation n'implique pas que le potentiel au sens V + le terme non linéaire soit une observable. L'appeler potentiel n'est pas lui donner le statut d'observable.

    Il ne l'est pas, MiPaMa a raison sur la notion d'observable.

    Les points de vue n'ont jamais été contradictoires...

    Et l'équation en question est un exemple pour la question de la dimension, sujet du fil.
    Dernière modification par Amanuensis ; 18/10/2013 à 17h40.
    Pour toute question, il y a une réponse simple, évidente, et fausse.

  4. #34
    coussin

    Re : dimension de l'equation de schrodinger

    Bah on se retrouve avec un terme composé d'une fonction de x et t que multiplie psi. On identifie cette fonction à un potentiel. J'y peut rien moi...

  5. #35
    invite47ecce17

    Re : dimension de l'equation de schrodinger

    Citation Envoyé par Amanuensis Voir le message
    Et l'équation en question est un exemple pour la question de la dimension, sujet du fil.
    Certes! J'avais perdu de vue cette question de depart!
    Autant pour moi!

  6. #36
    invitee0fcad7a

    Re : dimension de l'equation de schrodinger

    La question interessante est en effet quel est le statut de V.

    Et franchement on peut lui donner la dépendance que l'on veut, en x, en t, et ce qui nous passe par la tête, dans G-P c'est carrément que ce soit une fonction ou une fonction à valeur dans les opérateurs (ce qui n'est finalement qu'un produit cartésien...).

    Ce qui était faux dans mes réponses précédentes, c'est qu'un V(x,t) ne peut pas dépendre d'un arbitraire, ce qui est le cas de G-P.

    Et sinon, Miss, sais tu pourquoi est ce qu'on impose que les observables soient des opérateurs linéaires?

  7. #37
    invitee0fcad7a

    Re : dimension de l'equation de schrodinger

    mais l'Hamiltonien est un observable. Et l'Hamiltonien - l'énergie cinétique l'est aussi, mais c'est l'énergie potentiel?

  8. #38
    coussin

    Re : dimension de l'equation de schrodinger

    Citation Envoyé par MiPaMa Voir le message
    Certes! J'avais perdu de vue cette question de depart!
    Autant pour moi!
    Ça me semble trivial... Y a une constante g devant |psi|^2. Cette constante est telle que g|psi|^2 soit une énergie.

  9. #39
    invitee0fcad7a

    Re : dimension de l'equation de schrodinger

    L'énergie potentiel est une observable.

    bon, Ok ca n'a plus grand chose à avoir avec le sujet de départ, mais c'est facile d'avoir qqch de linéaire dans G-P: c'est un polynome d'ordre 3.

    Par définition (version mathématique...) du produit tensoriel, V un opérateur linaire de vers qqch qui on l'espère est

  10. #40
    Amanuensis

    Re : dimension de l'equation de schrodinger

    Citation Envoyé par Noix010 Voir le message
    L'énergie potentiel est une observable.
    Sur quoi vous basez-vous pour affirmer cela?
    Pour toute question, il y a une réponse simple, évidente, et fausse.

  11. #41
    Amanuensis

    Re : dimension de l'equation de schrodinger

    Citation Envoyé par Noix010 Voir le message
    c'est facile d'avoir qqch de linéaire dans G-P: c'est un polynome d'ordre 3.

    Par définition (version mathématique...) du produit tensoriel, V un opérateur linaire de vers qqch qui on l'espère est
    C'est une confusion. Ce n'est pas parce que f(x, y) est bilinéaire que x -> f(x,x) est linéaire!

    Sur le cas précis, (x,y,z) -> xyz est trilinéaire, mais x -> x^3 n'est pas linéaire.
    Dernière modification par Amanuensis ; 18/10/2013 à 18h10.
    Pour toute question, il y a une réponse simple, évidente, et fausse.

  12. #42
    invitee0fcad7a

    Re : dimension de l'equation de schrodinger

    Potentiel est une observable parce que l'énergie cinétique et l'hamiltonien le sont, donc la différence aussi.

    ah, c'est vrai ce que vous dites pour ces histoires de lineaire. Je pense à quelque chose, parce que ça me gène quand même ce V non linéaire:

    C'est: donné la valeur d'une fonction en un certain point, on l'etend de tel sorte que ce soit linéaire. Je pense plus précisément à ce qu'on appelle coproduit (dans les algèbres de Hopf, definition de "group element"): étant donné une base de l'algèbre, on defini sur ces éléments

    et on l'étend par linéarité.

    Pour en revenir à l'équation de GP: il faut rappeler qu'un "état" (avec quelques précisions en plus) est un "ray"?; comment dit on? un point de l'espace projectif.

    La question est plutot, est ce que V est bien défini sur sur cet espace projective. Et est il possible de l'étendre par linéarité?

  13. #43
    invitee0fcad7a

    Re : dimension de l'equation de schrodinger

    si on définit une observable comme n'importe quel opérateur hermitien sur

    de toute façon, si le hamiltonien H n'est pas linéaire on a un problème. Est ce simplement par un mauvais choit de l'espace de hilbert, si on a en tête que les observables forme une C* algèbre et qu'il y a bcp de représentations possible de cet algèbre.

Page 2 sur 2 PremièrePremière 2

Discussions similaires

  1. Réponses: 2
    Dernier message: 16/10/2013, 00h41
  2. Bioinformatique Schrodinger
    Par invite67a9b6e5 dans le forum Chimie
    Réponses: 4
    Dernier message: 25/04/2007, 14h45
  3. Ptite question au sujet de l'équation de Schrodinger
    Par invite02013105 dans le forum Physique
    Réponses: 1
    Dernier message: 10/01/2007, 20h57
  4. dimension de l'ensemble des endomorphismes d'un espace vectoriel de dimension n
    Par invite613a4e44 dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 20/11/2005, 10h40
  5. solution soliton de l'equation de schrodinger ?
    Par spi100 dans le forum Physique
    Réponses: 23
    Dernier message: 24/10/2005, 14h03