Limite de fonction et dérivée
Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

Limite de fonction et dérivée



  1. #1
    invite57f401e9

    Question Limite de fonction et dérivée


    ------

    bonjour, j'ai un soucis de limites.Je n'arrive pas a etudier les limites en -1 et 2 de ma fonction qui est la suivante:
    f(x)=(5x^2+2x-11)/(x^2-x-2)

    de plus j'ai calculer la derivée mais je pense qu'elle n'est pas juste car delta est negatif donc je n'ai pas de solutions.ma derivée est la suivante :
    f '(x)=(-7x^2+2x-15)/(x^2-x-2)^2

    merci d'avance!!

    cordialement

    -----

  2. #2
    invite8241b23e

    Re : Limite de fonction et dérivée

    Salut !

    Pour la limite, où est le soucis ?

    Pour la dérivée, du peux faire une vérification calculatrice !

  3. #3
    danyvio

    Re : Limite de fonction et dérivée

    Pour étudier les limites pour x= -1 et à x=2, étudie les valeurs de la fonction dans les intervalles où elle est définie I.E. ]-infini à -1[ ; ]-1 à +2[ ; ] +2 à + infini

    La dérivée je trouve -6x dans le premier membre, et non +2 x A vérifier

  4. #4
    invitef3dee274

    Re : Limite de fonction et dérivée

    f'(x)=(5x^2+2x-11)/(x^2-x-2)


    f'(x)=[(5x²+2x-11)'(x²-x-2)-(5x²+2x-11)(x²-x-2)']/(x²-x-2)²


    f'(x)=[(10x+2)(x²-x-2)-(5x²+2x-11)(2x-1)]/(x²-x-2)²

    f'(x)=[(10x³-10x²-20x+2x²-2x-4)-(10x³-5x²+4x²-2x-22x+11)/(x²-x-2)²

    f'(x)=(10x³-10x²-20x+2x²-2x-4-10x³+5x²-4x²+2x+22x-11)/(x²-x-2)²

    f'(x)=(-7x²+2x-15)/(x²-x-2)² tu l'avais bon! simple erreur de calcul...

    f'(-1)=(-7(-1)²+2(-1)-15)/((-1)²-(-1)-2)²
    f'(-1)=(-7-2-15)/(1+1-2)²
    f'(-1)=0

    f'(2)=(-7(2)²+2(2)-15)/((2)²-(2)-2)²
    f'(2)=(-28+4-15)/(4-2-2)²
    f'(2)=0

    Ça te sonne pas une cloche ça??

  5. A voir en vidéo sur Futura
  6. #5
    invite57f401e9

    Re : Limite de fonction et dérivée

    Pour les limites en -1- et -1+ je ne me rappelle plus comment elles se calculent car je dois trouver -infini et +infini et pareil pour 2.


    merci de m'aider

  7. #6
    invite57f401e9

    Re : Limite de fonction et dérivée

    comment dois je faire pour trouver le signe de f '(x) dans mon tableau de variation .c'est peu etre du signe inverse de a entre les racines qui sont ici -1 et 2!!!c'est ca???

  8. #7
    danyvio

    Re : Limite de fonction et dérivée

    Citation Envoyé par lany Voir le message
    f'(x)=(5x^2+2x-11)/(x^2-x-2)


    f'(-1)=(-7-2-15)/(1+1-2)²
    f'(-1)=0

    f'(2)=(-28+4-15)/(4-2-2)²
    f'(2)=0

    Ça te sonne pas une cloche ça??
    Je suis franchement épaté par les divisions par zéro !!!!!!!!!!!!!!!!!!!!!

  9. #8
    danyvio

    Re : Limite de fonction et dérivée

    Citation Envoyé par belody Voir le message
    comment dois je faire pour trouver le signe de f '(x) dans mon tableau de variation .c'est peu etre du signe inverse de a entre les racines qui sont ici -1 et 2!!!c'est ca???
    Il faut te préoccuper des racines du numérateur et non de celles (évidentes) du dénominateur. Ce dernier est toujours positif, sauf pour les valeurs -1 et 2 qui l'annulent, mais rendent le calcul impossible.

    Il faut que tu étudies le signe du numérateur quand x varie de -infini à plus petite racine du numérateur, de la plus petite racine à la plus grande, et de celle -ci à + infini, en observant bien une "coupure" aux valeurs -1 et +2. Sauf à faire le devoir à ta place, je ne t'en dis pas plus.
    cordialement

  10. #9
    invite57f401e9

    Re : Limite de fonction et dérivée

    desole mais j'ai une derniere question comment on fait pour calculer une tangente a la courbe au point d'abcisse 1
    dois je remplacer x par 1 dans ma fonction et j'obtiens
    y=? ax+b

  11. #10
    danyvio

    Re : Limite de fonction et dérivée

    Utilise déjà f'(1) = 10 qui te donne la pente de la tangente -> y=10x + b

    A toi de jouer pour la suite..

Discussions similaires

  1. fonction dérivée
    Par invite308fead6 dans le forum Mathématiques du collège et du lycée
    Réponses: 51
    Dernier message: 18/11/2007, 18h28
  2. Ordre du développement limité d'une dérivée
    Par cedbont dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 04/04/2007, 09h38
  3. Fonction Dérivée
    Par invitebf58d26c dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 05/05/2006, 18h51
  4. Limite avec le nombre dérivée
    Par inviteccdda4ee dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 09/04/2006, 13h28
  5. Problème de limite et de dérivée sur une fonction inconnue
    Par Bleyblue dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 29/07/2005, 02h01