Fonction Paire, et Fonction Impaire
Répondre à la discussion
Affichage des résultats 1 à 18 sur 18

Fonction Paire, et Fonction Impaire



  1. #1
    invitef5dc7e34

    Fonction Paire, et Fonction Impaire


    ------

    Ce serais pour savoir ce qu'est une fonction pair et une fonction impair en particulier pour la fonction inverse.
    Merci d'avance ^^ ( trop bien ce forum :] )

    -----

  2. #2
    invitebfd92313

    Re : Fonction Paire, et Fonction Impaire

    une fonction paire (resp. impaire) est une fonction dont l'ensemble est centré en O et qui vérifie f(-x)=f(x) (resp. f(-x)=-f(x)), celà se traduit graphiquement par une symétrie par rapport à l'axe (Oy) (resp. au point O)

  3. #3
    invitea7fcfc37

    Re : Fonction Paire, et Fonction Impaire


  4. #4
    invite6de5f0ac

    Re : Fonction Paire, et Fonction Impaire

    Bonjour,

    Une fonction paire est une fonction qui ne dépend pas du signe de la variable, autrement dit f(x)=f(-x). Une fonction impaire change de signe quand on change le signe de la variable, c'est-à-dire f(-x)=-f(x).

    Cela dit, Ares_Deus avait posté une question sur la "fonction inverse" il y a peu, et je me suis demandé s'il ne voulait pas en fait parler de "fonction réciproque", ce qui serait autrement plus intéressant -- et aussi plus difficile !

    -- françois

  5. A voir en vidéo sur Futura
  6. #5
    invitef5dc7e34

    Re : Fonction Paire, et Fonction Impaire

    Daccord, merci de vos réponse, donc on peux dire que la fonction carré est ue fonction pair, car un carré est toujours positif de plus elle est symetrique à O ( parabole ) alors que la fonction inverse est impair car son tracé depend de x si positif ou négatif, mais son tracé est aussi symetrique à O ( Hyperball )

  7. #6
    invitea7fcfc37

    Re : Fonction Paire, et Fonction Impaire

    Citation Envoyé par Ares_Deus Voir le message
    Daccord, merci de vos réponse, donc on peux dire que la fonction carré est ue fonction pair, car un carré est toujours positif de plus elle est symetrique à O ( parabole ) alors que la fonction inverse est impair car son tracé depend de x si positif ou négatif, mais son tracé est aussi symetrique à O ( Hyperball )
    La fonction carrée n'est pas symétrique par rapport à O mais par rapport à la droite (Oy) ! C'est ça qui est caractéristique d'une fonction paire.
    La fonction inverse, elle, est bien symétrique par rapport à O, impaire.

    PS : Hyperball ça fait un peu nom de film américain on dit hyperbole

  8. #7
    invitef5dc7e34

    Re : Fonction Paire, et Fonction Impaire

    Ok désolé, dans ce cas je ne voit pas trop comment differencie les deux type de fonction, en gros fonction pair les axe Oy et Ox sont symétrique et pour le spositif et pour les négatif ? ce qui est le cas dans la fonction inverse!

  9. #8
    invite3bc71fae

    Re : Fonction Paire, et Fonction Impaire

    Ne pas oublier la symétrie de l'ensemble de définition.

  10. #9
    invitec053041c

    Re : Fonction Paire, et Fonction Impaire

    Il ne faut pas oublier de vérifier que l'ensemble de définition est symétrique par rapport à 0.

  11. #10
    invitea7fcfc37

    Re : Fonction Paire, et Fonction Impaire

    Avec 1h59 de retard

  12. #11
    invitec053041c

    Re : Fonction Paire, et Fonction Impaire

    Oula désolé !

  13. #12
    invite2788df73

    Re : Fonction Paire, et Fonction Impaire

    bonjour je voudrai une aide pour cette exercice
    Tracer dans (o, i,j) la representation graphique C de la fonction f, definie sur R, impair et periodique, de periode 6, sachant que f(x){ -1\2x + 3\2 si xE [1;3]
    x si xE [0;1]

  14. #13
    invite90f5d184

    Re : Fonction Paire, et Fonction Impaire

    Bonjour
    Est-ce qu'on peut reconnaître une fonction paire ou impaire de façon plus simple?
    J'ai entendu dire que la fonction cube est impaire car la puissance (3) est nombre impair et que la fonction carré est paire car la puissance est un nombre pair, que donc on peut reconnaître une fonction pair ou impair grâce aux puissances, est-ce vrai ?

    Merci

  15. #14
    gg0
    Animateur Mathématiques

    Post Re : Fonction Paire, et Fonction Impaire

    Bonjour Linou.

    Avec l'habitude, on peut reconnaître certaines fonctions paires ou impaires dès leur écriture. C'est le cas des fonctions puissances (qui ont justement donné ces noms "paire" et "impaire") : Exposant pair : fonction paire; Exposant impair : fonction impaire.
    Mais dans de nombreux cas, la seule façon de savoir est d'appliquer la définition en espérant avoir un calcul efficace. D'ailleurs, la plupart des fonctions ne sont ni paires, ni impaires, et, si ça n'est pas assez simple, on ne se pose même pas la question, on fait l'étude, et si la courbe semble donner une symétrie, on essaie de la prouver.

    Cordialement.

  16. #15
    invite90f5d184

    Re : Fonction Paire, et Fonction Impaire

    Merci de votre intervention

    Pour quoi une fonction homographique du style: (3x+2)/(2x+9) est une fonction impaire, pourtant il y a 2 fois x donc si on additionne les puissances ça donne un nb paire ?

  17. #16
    gg0
    Animateur Mathématiques

    Re : Fonction Paire, et Fonction Impaire

    Bonjour.

    D'une part, ce n'est pas une fonction impaire, d'autre part, ce n'est pas une fonction puissance. Je pensais que tu savais ce que sont les fonctions puissances : forme où n est un entier.

    Tu devrais revoir ce qu'est une fonction impaire et ne pas mélanger avec le fait d'avoir un centre de symétrie pour la courbe.

    Bonne réflexion !

  18. #17
    invite90f5d184

    Re : Fonction Paire, et Fonction Impaire

    Excusez moi je me suis emmêlé les pinceaux.

    Pour une fonction impaire, est-ce qu'on peut dire que des intervalles symétriques par rapport à l'origine ont des variations identiques ?

  19. #18
    gg0
    Animateur Mathématiques

    Re : Fonction Paire, et Fonction Impaire

    Après décodage, je pense que oui.

    Très exactement, si f est impaire et définie sur [a,b] avec 0<=a<b, alors elle est définie sur [-b,a], et si elle est croissante sur [a,b], alors elle est croissante sur [-b,a]. C'est un excellent exercice de démontrer cela (avec les définitions et les règles sur les inégalités. Fais-le ...

    Cordialement.

Discussions similaires

  1. Fonction racine carrée et fonction cube
    Par invite1d9a0420 dans le forum Mathématiques du collège et du lycée
    Réponses: 10
    Dernier message: 15/10/2008, 16h43
  2. Fonction impaire
    Par invitee0ecf794 dans le forum Mathématiques du collège et du lycée
    Réponses: 15
    Dernier message: 24/04/2007, 16h39
  3. Passage fonction définie en paramétrique à fonction implicite ?
    Par invite9e01212f dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 27/03/2007, 23h38
  4. Fonction réciproque d'une fonction composée ??
    Par invite39b6d083 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 06/10/2006, 23h33
  5. fonction logarithme (étude de fonction)
    Par invitea9dcbcf8 dans le forum Mathématiques du supérieur
    Réponses: 29
    Dernier message: 24/04/2005, 22h58