Discriminant
Répondre à la discussion
Page 1 sur 2 1 DernièreDernière
Affichage des résultats 1 à 30 sur 59

Discriminant



  1. #1
    invite97b69a50

    Discriminant


    ------

    Bonjour, je cherche à démontrer le discriminant delta=b²-4ac.

    Comment arriver a ce résultat ? comment commencer ? Merci de bien vouloir m'éclairer pour une réponse...

    -----

  2. #2
    invitec053041c

    Re : Discriminant

    Salut.

    Ca ne veut rien dire "démontrer le discriminant b²-4ac".

    J'imagine que tu veux démontrer les formules générales de résolution d'équations du second degré.

    Tape donc "résolution d'équations du second degré" dans google, t'auras une multitude de réponses j'imagine.

  3. #3
    Duke Alchemist

    Re : Discriminant

    Bonsoir.
    Citation Envoyé par MECA Voir le message
    Bonjour, je cherche à démontrer le discriminant delta=b²-4ac.

    Comment arriver a ce résultat ? comment commencer ? Merci de bien vouloir m'éclairer pour une réponse...
    Le principe est le suivant :

    En partant de ax² + bx + c = 0 avec a non nul (bien entendu)

    - On factorise et on simplifie par a, on a alors : x² + (b/a)x + c/a = 0
    (Là, on reconnait la forme x² - Sx + P = 0, très utile pour un autre type d'exercices)

    On peut faire apparaître un carré (style a²+2ab+b² = (a+b)², si si )(astuce qui est souvent utile). On a alors :






    (oui c'est "-4ac" car il y a un signe "-" devant le terme b²/(4a²)).

    Cette forme qu'on appelle forme canonique du polynôme permet de retrouver toutes les propriétés de la parabole : axe de symétrie x = -b/(2a) par exemple, (qui correspond à la valeur de la racine double (ie discriminant nul))...

    Duke.

  4. #4
    invite72b8b1b8

    Re : Discriminant

    Bonjour à vous toutes et tous,

    Sur ce forum, je cherchais justement des réponses à la question d'où vient le b au carrée -4ac. Je suis tombé sur ce sujet, que je trouve intéressant car il répond à ma question, mais j'ai toutefois un peu de mal à comprendre la logique qu'il ce cache derrière ces successions de fraction, ou on n'a, parfois au numérateur, des soustractions et multiplications.

    Si je reprends l'explication du membre "DUKE ALCHEMIST", que je trouve intéressante, je me pose quand même plusieurs questions, tout d'abord, cette première question:

    1- A l'avant dernière étape, on n'a un "4ac/4a au carrée" qui apparait, pour quelle raison ? D'où sort ce "4" ? Pourquoi ajoute t'on " + 4ac/4a au carrée" à la fraction "( b au carrée/4a au carrée)", autrement dit à l'opposé de "b/2a" ?

    Je vous remercie beaucoup d'avance, pour ceux qui pourront m'éclairer sur cette question, si cela ne leur dérange pas, car je ne trouve pas très intéressant d'apprendre une formule, sans la comprendre. Je veux comprendre la logique qu'il se cache derrière cette dernière.

    Merci d'avance, cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    gg0
    Animateur Mathématiques

    Re : Discriminant

    Bonjour


    On appelle ça "réduire au même dénominateur", et on apprend ça en quatrième, quand on apprend à additionner deux fractions.

    Cordialement.

  7. #6
    PlaneteF

    Re : Discriminant

    Bonjour,

    Citation Envoyé par fred31460 Voir le message
    4ac/4a
    b/2a
    Attention à tes écritures qui sont fausses. En effet la multiplication n'est pas du tout prioritaire sur la division (l'inverse non plus d'ailleurs), donc il faut mettre des parenthèses pour le dénominateur.

    Rappel : https://fr.wikipedia.org/wiki/Ordre_des_op%C3%A9rations


    Cordialement

  8. #7
    invite72b8b1b8

    Re : Discriminant

    Merci pour vos réponses. Concernant la réduction au même dénominateur, je sais le faire . Mais je ne vois pas d'où sort la fraction " + 4ac/(4a au carré)" à l'avant dernière étape. A la dernière étape, j'ai compris qu'on n'a fait une réduction au même dénominateur, mais là, je ne vois ou est la réduction à l'avant dernière étape.

    Cordialement.

  9. #8
    Duke Alchemist

    Re : Discriminant

    Bonjour.

    On met simplement le b² et le c au même dénominateur.
    b² est divisé par 4a² donc on doit mettre le c sur ce même dénominateur.
    Là, le c est déjà divisé par a donc on multiplie par 4a (parce que 4a*a = 4a²... si si ) mais on le fait en même temps au numérateur et au dénominateur (afin de ne pas changer l'expression... cela revient à multiplier par 1 car (4a)/(4a)=1) d'où l'apparition du 4a devant le c.

    Tu m'as suivi ?

    Cordialement,
    Duke.
    Dernière modification par Duke Alchemist ; 25/09/2015 à 14h46.

  10. #9
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par Duke Alchemist Voir le message
    Bonjour.

    On met simplement le b² et le c au même dénominateur.
    b² est divisé par 4a² donc on doit mettre le c sur ce même dénominateur.
    Là, le c est déjà divisé par a donc on multiplie par 4a (parce que 4a*a = 4a²... si si ) mais on le fait en même temps au numérateur et au dénominateur (afin de ne pas changer l'expression... cela revient à multiplier par 1 car (4a)/(4a)=1) d'où l'apparition du 4a devant le c.

    Tu m'as suivi ?

    Cordialement,
    Duke.
    Merci pour ta réponse. Finalement, on peut dire que le "b au carré/(4a au carré)" = 0, vu que sur la 1ère ligne, on n'a le terme (b/2a) au carré moins (b/2a) au carré. Cela s'annule. Donc finalement, quand on met " c/a" sur le même dénominateur, on enlève donc "-4ac" à 0, cet à dire à la fraction b au carrée / (4a au carré).

    Concernant les racines d'un polynôme, pourquoi lorsque delta est positif, nous devons mettre ce delta sous un radical ? précédé de - b et le diviser par 2a ? La aussi, je ne comprends pas trop la logique...

    Merci d'avance, cordialement.

  11. #10
    PlaneteF

    Re : Discriminant

    Citation Envoyé par fred31460 Voir le message
    on n'a le terme (b/2a) au carré moins (b/2a) au carré.
    J'insiste ... il faut mettre b/(2a) ... sinon si tu mets (b/2a) cela veut dire

    Cdt
    Dernière modification par PlaneteF ; 25/09/2015 à 17h45.

  12. #11
    Duke Alchemist

    Re : Discriminant

    Citation Envoyé par fred31460 Voir le message
    Merci pour ta réponse. Finalement, on peut dire que le "b au carré/(4a au carré)" = 0, vu que sur la 1ère ligne, on n'a le terme (b/2a) au carré moins (b/2a) au carré. Cela s'annule. Donc finalement, quand on met " c/a" sur le même dénominateur, on enlève donc "-4ac" à 0, cet à dire à la fraction b au carrée / (4a au carré).
    En effet, en plus d'ajouter 0, on sait aussi multiplier par 1

    Concernant les racines d'un polynôme, pourquoi lorsque delta est positif, nous devons mettre ce delta sous un radical ? précédé de - b et le diviser par 2a ? La aussi, je ne comprends pas trop la logique...
    Il suffit de poursuivre le raisonnement :

    On reconnaît du a²-b² qu'on peut factoriser en (a-b)(a-b) afin d'avoir ici :



    Et que retrouve-t-on là, hein ?

    Duke.

  13. #12
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par Duke Alchemist Voir le message
    En effet, en plus d'ajouter 0, on sait aussi multiplier par 1


    Il suffit de poursuivre le raisonnement :

    On reconnaît du a²-b² qu'on peut factoriser en (a-b)(a-b) afin d'avoir ici :



    Et que retrouve-t-on là, hein ?

    Duke.

    Merci pour ta réponse . Mais il est vrai que quand même, on se perd très vite. Si je prends le livre de maths 1ère S "Déclic" édition 2015, la forme canonique est écrite de cette façon: " a ( x + b/2a) au carré - b au carrée - 4ac / ( 4a). Ne serait ce pas plutôt un "4a au carré" au dénominateur?

    Il y a aussi un autre truc qui me turlupine, la fraction b au carrée /(-4a) au carré, elle provient bien du fait que l'on n'a mis au même dénominateur les fractions " b/(2a) au carré - b/(2a) au carré, ( 1ère étape du 3ème messages, celui de "DUKE", plus haut) donc elle sera toujours égale à 1 ?

    Pourtant, si je prends le polynôme f(x)= 2x au carré + 12x + 5, et que je le met sous la forme: 2 ( x + 12/(2X2) au carré - 12 - 4X2X5/ 4X2, le "-12", qui est donc notre " b au carré", ne vaut absolument pas 1...

    Merci pour ceux qui pourront m'aider.

  14. #13
    invite72b8b1b8

    Re : Discriminant

    En faite, ma question est plutôt:

    Pourquoi enlève t'on " b au carré/ (4a au carré) à la seconde étape ( troisième message en partant du haut; celui de "Duke"). Je sais que cela est du au fait que l'on n'a mis au même dénominateur, mais à quoi cela sert de le retirer à ( x + b/(2a) au carré ?

    Je viens de trouver réponse à mon message de dessus, désolé, je ne sais pas comment on fait pour le supprimer

    Merci d'avance pour ceux qui pourront m'aider

  15. #14
    gg0
    Animateur Mathématiques

    Re : Discriminant

    "Pourquoi enlève t-on " b au carré/ (4a au carré) à la seconde étape ?"
    Rien à voir avec la réduction au même dénominateur. On l'enlève pour que ça reste égal. Si tu regardes bien, d'ailleurs, on n'enlève rien, le -b²/(4a²) est déjà dans la première ligne. Apparemment, tu n'as pas vu que les trois premiers termes donnent le carré.
    Rappel : Un calcul, ça se fait soi-même. Il n'y a rien de mystérieux dans ce calcul, juste un "truc" pour avoir un carré de somme.
    Rappel : dans un calcul, si on met = c'est que c'est le même nombre écrit différemment. Par exemple 4=2+2=8/4+58/29.

    Cordialement.

  16. #15
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par gg0 Voir le message
    "Pourquoi enlève t-on " b au carré/ (4a au carré) à la seconde étape ?"
    Rien à voir avec la réduction au même dénominateur. On l'enlève pour que ça reste égal. Si tu regardes bien, d'ailleurs, on n'enlève rien, le -b²/(4a²) est déjà dans la première ligne. Apparemment, tu n'as pas vu que les trois premiers termes donnent le carré.
    Rappel : Un calcul, ça se fait soi-même. Il n'y a rien de mystérieux dans ce calcul, juste un "truc" pour avoir un carré de somme.
    Rappel : dans un calcul, si on met = c'est que c'est le même nombre écrit différemment. Par exemple 4=2+2=8/4+58/29.

    Cordialement.
    Merci pout ta réponse, mais j'ai vraiment du mal à comprendre quand même...

    A la première étape, on n'a fait apparaitre un " b/(2a) au carré en développant l'identité remarquable. Par conséquent, il faut l'enlever en faisant son opposé, à savoir -b/(2a) au carré.

  17. #16
    gg0
    Animateur Mathématiques

    Re : Discriminant

    Oui, c'est ça. 4 = 4 +8-8.

    Où est le problème ? 4 = 4 +8-8 = 12-8.

  18. #17
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par fred31460 Voir le message
    Merci pout ta réponse, mais j'ai vraiment du mal à comprendre quand même...

    A la première étape, on n'a fait apparaitre un " b/(2a) au carré en développant l'identité remarquable. Par conséquent, il faut l'enlever en faisant son opposé, à savoir -b/(2a) au carré.
    Finalement, voilà ce que j'ai compris. Si je prends le polynôme suivant:

    f(x)= 2x au carré + 12x +8 = 0.

    Pour supprimer le "12x", je vais devoir faire "-12x". Dans ma forme canonique, cela correspond au "-b au carré/(4a) au carré, qui est l'opposé de "b/(2a) au carré", à savoir dans mon exemple 12x.

    Ensuite, je dois multiplier le "2" par un nombre (que je vais noter" y"), de tel sorte qu'il soit l'opposé de "8", comme ça, notre polynôme est égal à 0. " Le b au carré -4ac/(4a) au carré correspondrait au nombre "y" pour supprimer le "ax" au carré, cet à dire dans mon exemple le "2 x au carré".

    Ici, je vais devoir multiplier le "2" par 2, autrement dit, remplacer mon "x au carré" par - 2, car 2X-2=-4 et 2X -4 = - 8. Du coup, tout cela est bien égal à 0.

    C'est bien cela ?

  19. #18
    PlaneteF

    Re : Discriminant

    Bonsoir,

    Citation Envoyé par fred31460 Voir le message
    f(x)= 2x au carré + 12x +8 = 0.
    Ben déjà l'équation à résoudre s'écrit : et la fonction s'exprime au préalable

    Cordialement
    Dernière modification par PlaneteF ; 28/09/2015 à 21h07.

  20. #19
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par PlaneteF Voir le message
    Bonsoir,



    Ben déjà l'équation à résoudre s'écrit : et la fonction s'exprime au préalable

    Cordialement
    Merci pour l'info . Donc dans l'équation x au carré + 6x + 4=0, déjà pour supprimer le "6x", il faut faire "-6x", cela correspond à b au carré/(4a) au carré, qui est donc l'opposé de "6x", cet à dire " b/(2a)" au carré.

    Ensuite, on remplace le "x au carré" par "-2", ce qui fait "-2" au carré, cet à dire "-4". Le chiffre "-4" est bien opposé à 4 ( qui est la constance "c"). Cela représenterait le "b au carré -4ac/(4a) au carré.

    On n'a bien un résultat = à 0, mais écrit différemment.

    Cordialement.

  21. #20
    PlaneteF

    Re : Discriminant

    Ta prose n'est pas claire pour moi

    On peut dire tout simplement : Dans on reconnait les 2 premiers termes du produit remarquable

    Donc tu en déduis immédiatement :

    Et là tout simplement, on peut appliquer l'identité remarquable ... et le tour est joué.

    C'est tout !

    Cdt
    Dernière modification par PlaneteF ; 28/09/2015 à 21h58.

  22. #21
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par PlaneteF Voir le message
    Ta prose n'est pas claire pour moi

    On peut dire tout simplement : Dans on reconnait les 2 premiers termes du produit remarquable

    Donc tu en déduis immédiatement :

    Et là tout simplement, on peut appliquer l'identité remarquable ... et le tour est joué.

    C'est tout !

    Cdt
    Bonjour,

    Merci pour ta réponse.

    Le but de la forme canonique, c'est bien que cela soit égal à 0 non ?. Si on calcule la forme canonique de dessus, ce n'est pas égal à 0, ou alors, c'est moi qui n'est pas compris le principe...

  23. #22
    PlaneteF

    Re : Discriminant

    Bonjour,

    Citation Envoyé par fred31460 Voir le message
    Le but de la forme canonique, c'est bien que cela soit égal à 0 non ?
    Non, pas du tout ... La forme canonique c'est juste une autre forme pour l'expression d'un polynôme du second degré, qui dans certains est plus pratique (comme ici), qui dans d'autres cas l'est moins --> Rien à voir avec ce que tu dis.

    Cdt
    Dernière modification par PlaneteF ; 29/09/2015 à 10h42.

  24. #23
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par PlaneteF Voir le message
    Bonjour,



    Non, pas du tout ... La forme canonique c'est juste une autre forme pour l'expression d'un polynôme du second degré, qui dans certains est plus pratique (comme ici), qui dans d'autres cas l'est moins --> Rien à voir avec ce que tu dis.

    Cdt
    Alors pour qu'elle raison met t'on "= 0" ?. C'est bien que cela doit être égal à 0 quelque part... J'ai vraiment un gros problème de logique avec cette forme canonique, je n'arriverai jamais à la comprendre et cela m'énerve vraiment... Je ne vois pas le coté logique, notamment pourquoi "delta" nous donne t'il le nombre de racine du polynôme. On va me dire qu'il vient de la forme canonique, mais je ne vois pas le truc logique qu'il y a dernière. Je ne baisserai pas les bras pour autan .

    Cordialement.

  25. #24
    gg0
    Animateur Mathématiques

    Re : Discriminant

    Fred31460 :
    Pour supprimer le "12x", ...
    ... déjà pour supprimer le "6x", il faut ...
    Pourquoi veux-tu supprimer quoi que ce soit ? On calcule (*), on ne tue pas, on ne trafique pas les écritures.
    Je me demande si tu as appris les règles de calcul algébrique qu'on voit en quatrième. Tu sembles ne pas les connaître. P°lus exactement, "calculer" sans savoir ce que tu fais.

    Cordialement.

    (*) Calculer, c'est transformer une expression en une autre qui a la même valeur, en appliquant des règles; ou transformer des égalités en des égalités équivalentes (vraies dans les mêmes circonstances), en appliquant des règles; ou transformer des inégalités en des inégalités équivalentes (vraies dans les mêmes circonstances), en appliquant des règles.

  26. #25
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par gg0 Voir le message
    Fred31460 :

    Pourquoi veux-tu supprimer quoi que ce soit ? On calcule (*), on ne tue pas, on ne trafique pas les écritures.
    Je me demande si tu as appris les règles de calcul algébrique qu'on voit en quatrième. Tu sembles ne pas les connaître. P°lus exactement, "calculer" sans savoir ce que tu fais.

    Cordialement.

    (*) Calculer, c'est transformer une expression en une autre qui a la même valeur, en appliquant des règles; ou transformer des égalités en des égalités équivalentes (vraies dans les mêmes circonstances), en appliquant des règles; ou transformer des inégalités en des inégalités équivalentes (vraies dans les mêmes circonstances), en appliquant des règles.
    Bonjour,

    Oui, j'ai des lacunes en maths, du à un retard. Je n'ai jamais voulu travailler, faire des exos ou apprendre mes leçons depuis la 6ème, résultat, je vais devoir tout reprendre à 0...

    La forme canonique s'appelle aussi "forme réduite", donc cela a un rapport avec les réductions d'expressions algébriques que l'on voit en 4ème ? Que me conseillerais tu, pour ne pas avoir des lacunes avec la forme canonique ? De revoir la réduction d'expression algébrique uniquement ?

    Cordialement.

  27. #26
    PlaneteF

    Re : Discriminant

    Citation Envoyé par fred31460 Voir le message
    Alors pour qu'elle raison met t'on "= 0" ?
    Ca c'est lorsque l'on demande par exemple de résoudre une équation du second degré. Mais tu peux très bien calculer la forme canonique indépendamment d'une telle résolution. C'est juste que cette forme est justement la plus adaptée pour faire cette résolution, si cette résolution est demandée.

    Cdt
    Dernière modification par PlaneteF ; 29/09/2015 à 10h55.

  28. #27
    gg0
    Animateur Mathématiques

    Re : Discriminant

    Citation Envoyé par fred31460 Voir le message
    ... La forme canonique s'appelle aussi "forme réduite", donc cela a un rapport avec les réductions d'expressions algébriques que l'on voit en 4ème ?
    Non, rien à voir. Le mot "réduire" est un mot français qu'on peut employer dans de nombreuses circonstances.
    Que me conseillerais tu, pour ne pas avoir des lacunes avec la forme canonique ? De revoir la réduction d'expression algébrique uniquement ?
    De reprendre les cours de maths de la sixième à la seconde. Ça peut être fait très vite, en te faisant des fiches pour rassembler les connaissances qui te manquent. Puis, dans tout ce que tu fais en maths, ne faire qu'appliquer les règles (celles des cours, pas celles que tu t'es mis en tête en regardant les corrigés d'exercices).
    Tu t'apercevras vite que tu connais bien plus de choses que tu pourrais l'imaginer. Mais c'est enfoui sous des mauvaises habitudes.

    Cordialement.

  29. #28
    invite72b8b1b8

    Re : Discriminant

    Citation Envoyé par gg0 Voir le message
    Non, rien à voir. Le mot "réduire" est un mot français qu'on peut employer dans de nombreuses circonstances.

    De reprendre les cours de maths de la sixième à la seconde. Ça peut être fait très vite, en te faisant des fiches pour rassembler les connaissances qui te manquent. Puis, dans tout ce que tu fais en maths, ne faire qu'appliquer les règles (celles des cours, pas celles que tu t'es mis en tête en regardant les corrigés d'exercices).
    Tu t'apercevras vite que tu connais bien plus de choses que tu pourrais l'imaginer. Mais c'est enfoui sous des mauvaises habitudes.

    Cordialement.
    Merci de tes conseils . Je voulais en effet faire des fiches. D'ailleurs, j'ai téléchargé un logiciel (Texmacs) pour faires des fiches de maths, vu qu'il y a les formules. Je pense faire un fiche uniquement sur l'algèbre, regroupant donc calculs de fractions, puissances, racines carrées, développement ( simple et double distributivité), réduction et factorisation ( facteur commun ou identité remarquable).

    Qu'en penses-tu ? Est-ce-que cela me permettra de mieux comprendre cette forme canonique ?

    Cordialement.

  30. #29
    PlaneteF

    Re : Discriminant

    Citation Envoyé par fred31460 Voir le message
    Est-ce-que cela me permettra de mieux comprendre cette forme canonique ?
    Je pense que tu te fais toute une montagne sur cette histoire de forme canonique. Qu'est-ce que tu ne comprends pas au juste ? ... Comment on calcule cette forme canonique ? ... Sa raison d'être ? ... Autres choses ? ...

    Cdt
    Dernière modification par PlaneteF ; 29/09/2015 à 11h53.

  31. #30
    gg0
    Animateur Mathématiques

    Re : Discriminant

    Qu'en penses-tu ? Est-ce-que cela me permettra de mieux comprendre cette forme canonique ?
    Il n'y a rien à comprendre à la forme canonique, c'est simplement une autre façon d'écrire le même nombre. Par contre, ça pourrait te permettre de comprendre le calcul qui est fait, avec les indications que tu as eues ici. Et ça te fera progresser sur le reste.

Page 1 sur 2 1 DernièreDernière

Discussions similaires

  1. Matrice tridiagonale, discriminant polynome caractéristique d'une relation récurrence
    Par invite493e400a dans le forum Mathématiques du supérieur
    Réponses: 18
    Dernier message: 27/05/2010, 21h15
  2. Discriminant
    Par invite24dc6ecc dans le forum Mathématiques du collège et du lycée
    Réponses: 28
    Dernier message: 19/01/2008, 14h28
  3. calcul discriminant trinome racine deuxiemes
    Par invite8937d22e dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 10/11/2007, 23h45
  4. Equation et Discriminant
    Par invite693d963c dans le forum Mathématiques du collège et du lycée
    Réponses: 24
    Dernier message: 29/09/2007, 19h36