Équations dans C
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Équations dans C



  1. #1
    Jon83

    Équations dans C


    ------

    Bonsoir!

    Soit l'équation z + 3*conj(z)=(2+i*sqrt(3))*|z|
    Pourquoi peut-on dire qu'elle est équivalente à un système de deux équations:
    1) z + 3*conj(z)=(2+i*sqrt(3))*|z|
    2) conj(z) + 3*z=(2-i*sqrt(3))*|z|

    -----

  2. #2
    invite029139fa

    Re : Équations dans C

    En fait, le système que tu nous donne n'en est pas vraiment un car les deux équation de ce "système" sont équivalentes. Par contre, on peut dire que ton équation 1) est équivalente à l'équation 2) car :

    et on a : et

  3. #3
    Jon83

    Re : Équations dans C

    Bonjour!

    En effet, les deux équations sont équivalentes!
    Alors, je ne comprends pas du tout la résolution donnée dans la solution (voir fichier joint) ???
    Si quelqu'un peut m'expliquer...
    Images attachées Images attachées  

  4. #4
    Seirios

    Re : Équations dans C

    Bonjour,

    En fait la première équivalence est triviale, c'est comme si tu écrivais : A est vrai si et seulement si A et A sont vrais. Par contre je ne vois pas d'où vient la deuxième équivalence.

    Pour faire simple : transforme ton équation complexe en un système de deux équations en identifiant les parties réelle et imaginaire.
    If your method does not solve the problem, change the problem.

  5. A voir en vidéo sur Futura
  6. #5
    Jon83

    Re : Équations dans C

    Oui, cette méthode est bizarre!! Voici ce que j'ai fait:
    z=x+iy
    x+iy+3x-3iy=(2+i*sqrt(3))*|z|
    4x/|z| - 2iy/|z| = 2 + i*sqrt(3)
    => 4x/|z| = 2 --> 2x/|z| = 1 --> x>0 et |z|= 2x
    => -2y/|z| = sqrt(3) --> 2y=|z|*sqrt(3) = -2x*sqrt(3)
    donc z = x - i*x*sqrt(3) = x(1-i*sqrt(3)) avec x>0
    ce qui est plus rapide!!!

  7. #6
    Seirios

    Re : Équations dans C

    Attention, si tu divises par , il faut envisager le cas où z est nul (tu n'as d'ailleurs pas besoin de diviser).
    If your method does not solve the problem, change the problem.

  8. #7
    Jon83

    Re : Équations dans C

    Exact, ça peut se faire sans diviser par |z|.
    Merci pour ta remarque

  9. #8
    Médiat

    Re : Équations dans C

    Bonjour
    Citation Envoyé par Phys2 Voir le message
    Par contre je ne vois pas d'où vient la deuxième équivalence.
    Le corrigé utilise le fait que et .
    C'est correct comme démonstration, mais plus pédant qu'autre chose, d'autant plus qu'il y a une vraie erreur dans ce corrigé !
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

Discussions similaires

  1. Equations dans Z
    Par invite97a526b6 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 15/06/2010, 22h15
  2. Equations dans C
    Par invite03a88db5 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 11/10/2009, 17h59
  3. Equations dans C
    Par invite13e0016f dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 04/01/2009, 21h43
  4. Equations dans C a coefficients complexes
    Par invite7ac151ce dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 20/01/2008, 19h34
  5. équations du 4°degré dans C
    Par invite8b5b8820 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 16/09/2006, 17h17