Équation différentielle particulière
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Équation différentielle particulière



  1. #1
    invite37f3f1a3

    Équation différentielle particulière


    ------

    Bonsoir certaines questions d'un exercice de maths me pose certains soucis :s.
    Voici l'énoncé complet de l'exercice:
    Partie A
    La fonction f est définie sur l'intervalle [0;+infinie[ par f(x)=(20x+10)e(-1/2)*x
    On note C la courbe représentative de f dans un repère orthonormal.
    1.Etudier la limite de la fonction f en +infinie.
    2.Etudier les variations de la fonction f et dresser son tableau de variation.
    3. Établir que l'équation f(x)=10 admet une unique solution strictement positive alpha. En donner une valeur approchée décimale à 10-3 près.
    4.Tracer C.

    Partie B
    On note y(t) la valeur, en degrés Celsius, de la température d'une réaction chimique à l'instant t, t étant exprimé en heures. La valeur initiale, à l'instant t=0, est y(0)=0.
    On admet que la fonction qui, à tout réel t de l'intervalle[0;+infinie[ associe y(t) est solution de l'équation différentielle : (E)y'+(1/2)*y=20e(-1/2)*t.
    1. Vérifier que la fonction f étudiée dans la partie A est solution de l'équation différentielle (E) sur l'intervalle [0;+infinie[.
    2.On se propose de démonter que cette fonction f est l'unique solution de (E), définie sur [0;+infinie[, qui prend la valeur 10 à l'instant 0.
    a) On note g une solution quelconque de (E), définie sur l'intervalle [0;+infinie[, vérifiant g(0)=10. Démontrer que la fonction g-f est solution, sur l'intervalle [0;+infinie[, de l'équation différentielle: (E') y'+(1/2)*y=0.
    b) Résoudre l'équation différentielle (E').
    c) Conclure.

    3. Au bout de combien de temps la température de cette réaction chimique redescend-elle à sa valeur initiale? Le résultat sera arrondi à la minute.

    Mes réponses:
    Je ne répondrai pas ici aux questions de la partie A étant donné qu'elles ne m'ont pas posé(je pense) réellement de problème et qu'elles sont plus axés sur la fonction exponentielle. Je ne répondrai pas également à la question 1 de la partie B parce que je ne pense pas non plus qu'elle m'est posé problème.
    Cela dit la question 2 de la partie B, m'a posé quelques soucis, voici m'a réponse:
    2)a) J'ai raisonné par équivalence: soit g une fonction définie sur R+ vérifiant g(0)=0
    g-f est solution, sur l'intervalle [0;+infinie[, de l'équation différentielle (E') y'+(1/2)*y=0 ssi
    pour tout x appartenant à R+, (g-f)'(x)+(1/2)*(g-f)(x)=0 ssi pour tout x appartenant à R+, g'(x)-f'(x)+(1/2)*g(x)-(1/2)*f(x)=0 ssi pour tout x appartenant à R+,g'(x)+(1/2)g(x)=f'(x)+(1/2)*f(x) ssi pour tout x appartenant à R+ g'(x)+(1/2)*g(x)=20e(-1/2)*x g est solution de (E)
    . Mais avec ce raisonnement je n'ai pas démonter ni que g était définie sur R+, ni que g vérifie g(0)=10 j'ai du poser cette affirmation au début. Ai je le droit de faire sa? Cette démonstration est elle quand même juste ou faut il procéder autrement?
    b) Pas vraiment de problèmes pour le début de cette question (E') y'=(-1/2)*y
    Les solutions de y'=(-1/2)*y sont les fonctions définies sur R par x donne Ce(-1/2)*x (C)
    g-f est solution sur l'intervalle [0;+infinie[ de (E'), donc pour tout x appartenant à R+ (g-f)(x)= Ce(-1/2)*x
    On veut f(0)=10 et g(0)=10 soit (g-f)(0)=0 C=0
    Ainsi la solution recherché est,
    pour tout x appartenant à R+, (g-f)(x)=0.

    Ici ma question est la suivante, est ce que (g-f)(0) est bien égal g(0)-f(0)? (Et de manière général (g-f)(x) est il égal à g(x)-f(x) ?)
    c)On sait que g est solution quelconque de (E) sur [0;+infinie[, de plus pour tout x appartenant à R+ g(x)-f(x)=0 donc g(x)=f(x). Donc f est l'unique solution de (E) qui prend pour valeur f(0)=10.
    La rédaction de cette question est elle bonne? Est-ce bien ce que l'on doit conclure?
    3. Cette question là m'a posé de gros soucis. En effet f est la solution de (E) mais a comme condition initiale f(0)=10 or la fonction y(t) représentant la valeur de la température en fonction du temps est bien solution de (E) mais à comme condition initiale y(0)=0. Ainsi comment trouver l'expression de y? Ou n'y a t'il aucun expression à trouver de y et simplement dire que les courbes représentatives de f est y sont similaire au détail près que celle de f est plus haute que celle de y et que donc le correspondant est le trouver à la partie A? Ou ce raisonnement est il faut?
    Merci d'avance, bonne soirée .

    -----

  2. #2
    invitee4135479

    Re : Équation différentielle particulière

    2 a)
    pour tout x appartenant à R+,montrer que (g-f)'(x)+(1/2)*(g-f)(x)=0.

    tu développe l'expression, pour tout x appartenant à R+, (g-f)'(x)+(1/2)*(g-f)(x) =g'(x)-f'(x)+(1/2)*g(x)-(1/2)*f(x)=g'(x)+1/2*g(x)- (f'(x)+1/2*f(x))=g'(x)+1/2*g(x) -(20e(-1/2)*x.

    comme g est solution de (E) ==>g'(x)+1/2*g(x) -20e(-1/2)*x =0

    d'ou g-f est l'un des solutions de (E) sur IR+.

  3. #3
    invitee4135479

    Re : Équation différentielle particulière

    Ici ma question est la suivante, est ce que (g-f)(0) est bien égal g(0)-f(0)? (Et de manière général (g-f)(x) est il égal à g(x)-f(x) ?
    oui correct

  4. #4
    invitee4135479

    Re : Équation différentielle particulière

    pour le b) tu a g(0)=10=Ce^(-1/2*0)=Ce^0=C===> C=0.

    donc la solution de (E') est le fonction définie sur IR+ par y(t)=10e^(-1/2t).

    ps:essai pas mélanger tout.comprendre la question c'est la moitie de la réponse.

  5. A voir en vidéo sur Futura
  6. #5
    invitee4135479

    Re : Équation différentielle particulière

    c): conclusion ;

    f est solution général de l’équation différentielle (E)/
    car y(t)=10e^(-1/2t) est solution de l’équation homogène et y(x)=20xe(-1/2)*x est solution particulier donc on somme les deux pour trouvé la solution général qui exactement f.

  7. #6
    invite37f3f1a3

    Re : Équation différentielle particulière

    Bonsoir je ne comprend pas comment vous avez établit la solution de (E') cal solution de (E') ce n'est pas g mais g-f d'après l'énoncé et si C=0 alors la solution est nul non?

  8. #7
    invitee4135479

    Re : Équation différentielle particulière

    pour le 3) il suffit de résoudre l'équation f(t)=0, cherché le t=temps

  9. #8
    invite37f3f1a3

    Re : Équation différentielle particulière

    Merci bien .

Discussions similaires

  1. solution particulière d'équation différentielle
    Par invite371ae0af dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 29/04/2011, 13h05
  2. Resolution d'une équation particulière
    Par invite57e73c4e dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 13/04/2011, 13h17
  3. Equation différentielle d'ordre 2- Solution particulière
    Par inviteea5db5e2 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 26/09/2010, 17h58
  4. Solution particulière d'une équation diophantienne avec le pgcd
    Par inviteb951b80b dans le forum Mathématiques du collège et du lycée
    Réponses: 9
    Dernier message: 23/05/2010, 16h58
  5. Solution particulière de l'equation differentielle
    Par invitedfd87456 dans le forum Physique
    Réponses: 10
    Dernier message: 10/10/2008, 19h14