Démonstration par récurrence avec factorielle
Répondre à la discussion
Affichage des résultats 1 à 10 sur 10

Démonstration par récurrence avec factorielle



  1. #1
    invitea6f58379

    Unhappy Démonstration par récurrence avec factorielle


    ------

    Bonjour, je n'arrive pas à faire cet exercice :

    Soit x un nombre réel positif ou nul et k un entier strictement supérieur à x

    1) Démontrer par récurrence sur n que, pour tout entier n supérieur ou égal à k : k^n/n! plus petit ou égal à k^k/k!

    2) En déduire que, pour tout entier n supérieur ou égal à k : x^n/n! plus petit ou égal à (x/k)^n * k^k/k!

    3) Démontrer que lim x^n/n! = 0 quand n tend vers +infini

    Voilà.. Merci d'avance pour votre aide

    -----

  2. #2
    PlaneteF

    Re : Démonstration par récurrence avec factorielle

    Bonjour,

    Où es-tu bloqué exactement ?

    Cordialement
    Dernière modification par PlaneteF ; 09/10/2013 à 16h38.

  3. #3
    invitea6f58379

    Re : Démonstration par récurrence avec factorielle

    On a pas abordé la notion de factorielle en cours, donc je ne sais pas ce que ça signifie

  4. #4
    invitea6f58379

    Re : Démonstration par récurrence avec factorielle

    Et j'ai du mal à faire les démonstrations par récurrence.. pouvez-vous m'aider à la commencer ?

  5. A voir en vidéo sur Futura
  6. #5
    Paraboloide_Hyperbolique

    Re : Démonstration par récurrence avec factorielle

    Bonsoir,

    La factorielle de n est: . Note: par convention

    Pour ce qui est d'une démonstration par récurrence sur n, on procède schématiquement ainsi:

    1. On vérifie l'hypothèse pour n = 0 (ou n = 1, si on commence à 1).
    2. On suppose l'hypothèse vraie pour n-1.
    3. On vérifie l'hypothèse pour n, en supposant (2).

  7. #6
    invitea6f58379

    Re : Démonstration par récurrence avec factorielle

    Merci, pour l'étape 2 c'est on vérifie pour n-1 et non pas pour n+1 ?

  8. #7
    Paraboloide_Hyperbolique

    Re : Démonstration par récurrence avec factorielle

    En effet, l'hypothèse est prise comme vraie pour n-1. On la démontre alors pour n en utilisant le fait que l'hypothèse est prise comme vraie pour n-1.

  9. #8
    invitea6f58379

    Re : Démonstration par récurrence avec factorielle

    Citation Envoyé par Paraboloide_Hyperbolique Voir le message
    En effet, l'hypothèse est prise comme vraie pour n-1. On la démontre alors pour n en utilisant le fait que l'hypothèse est prise comme vraie pour n-1.
    Donc je peux mettre ça : On suppose que k^p-1/(p-1)! est plus petit ou égal à k^k/k! pour p supérieur à 0 ?

  10. #9
    PlaneteF

    Re : Démonstration par récurrence avec factorielle

    Si l'on appelle la propriété :

    La démonstration par récurrence va consister à démontrer que :

    1) --> Attention, ici le premier le premier rang n'est pas (comme c'est souvent le cas), mais .

    2)


    Cordialement
    Dernière modification par PlaneteF ; 10/10/2013 à 00h39.

  11. #10
    PlaneteF

    Re : Démonstration par récurrence avec factorielle

    Je rajoute :

    Ce qui permettra alors de conclure que :

    (c'est bien ce que demande l'énoncé)
    Dernière modification par PlaneteF ; 10/10/2013 à 00h44.

Discussions similaires

  1. demonstration par recurrence
    Par 221 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 19/10/2009, 21h37
  2. Démonstration par récurrence
    Par invite3c7cf36a dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 11/01/2009, 12h48
  3. Problème factorielle raisonnement par recurrence
    Par invite86d2a51a dans le forum Mathématiques du collège et du lycée
    Réponses: 22
    Dernier message: 26/10/2008, 14h52
  4. Démonstration par Récurrence [TS]
    Par invitea7a3849b dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 11/09/2008, 20h02
  5. Démonstration par récurrence
    Par invite4e8412ad dans le forum Mathématiques du supérieur
    Réponses: 35
    Dernier message: 09/10/2006, 19h14