Intégrale de sin(x)/x
Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

Intégrale de sin(x)/x



  1. #1
    invite63840053

    Intégrale de sin(x)/x


    ------

    Bonsoir,
    J'aimerais démontrer que en passant par les transformées de Fourier.
    Je sais que la transformation de fourier d'une fonction porte entre [-1;1] est égale à , mais je n'arrive pas à m'en sortir.

    Est-ce que quelqu'un à une idée ?

    -----

  2. #2
    invite4ef352d8

    Re : Intégrale de sin(x)/x

    Et bien si tu connait la formule d'inversion de fourier, il suffit de l'appliquer.

    sinon je vois pas trop comment utiliser le calcule que tu cite, mais je connait d'autre méthode pour prouver le résultat que tu énonce si il y a bessoin.

  3. #3
    invite63840053

    Re : Intégrale de sin(x)/x

    J'aimerais bien les voir s'il te plaît.

  4. #4
    invite4ef352d8

    Re : Intégrale de sin(x)/x

    Tu as vu la dérivation sous le signe intégral ?

  5. A voir en vidéo sur Futura
  6. #5
    invite63840053

    Re : Intégrale de sin(x)/x

    Oui, je l'ai vu.

  7. #6
    invite4ef352d8

    Re : Intégrale de sin(x)/x

    Ok alors une methode (complemet anti intuiive, mais pas super compliqué)

    on pose ( pour x>=0)
    f(x)= intégral de de 0 a l'infinit de sin(t)/(x+t) dt
    g(x)= intégral de 0 à l'infinit de exp(-tx)/(1+t²) dt
    h(x)=g(x)-f(x)
    on vérifie rapidement qu'elles sont définit est continu sur R+

    utilise la dérivation sous le signe intégral pour montrer que pour x>0
    f''(x)+f(x)=1/x
    g''(x)+f(x)=1/x


    on en déduis que h''(x)+h(x)=0 donc h(x)=asin(x)+bcos(x). mais on vérifie aussi que h->0 en l'infinit, donc h(x)=0. donc f(x)=g(x).

    on applique cela en x=0 et on trouve que intégral de sin(t)/t entre 0 et l'infinit = intégral de 1/(1+x²) entre 0 et l'infinit =Pi/2

  8. #7
    invite4ef352d8

    Re : Intégrale de sin(x)/x

    mais si tu veux passer par les transofrmé de fourier, y a pas de secret, c'est la formule d'inversion de fourier qui fait cela. (y aussi une autre formule dont je ne me rapelle plus le nom qui relie l'intégral de f a celle de F un peu comme la formule somatoire de POisson... mais je ne me rapelle plus son nom, et si je me souviens bien, c'est juste un cas particulier de la formule d'inversion...)

  9. #8
    invite63840053

    Re : Intégrale de sin(x)/x

    Oui j'ai finalement réussi à le faire avec Fourier, merci.
    Ta méthode est, c'est vrai, pas du tout intuitive. Tu en connaitrais d'autre ?

  10. #9
    breukin

    Re : Intégrale de sin(x)/x

    Une plus logique consiste à étudier :
    f(x) = intégrale de 0 à l'infini de exp(-tx).sin t/t dt
    f'(x) peut se calculer, donc f(x) par intégration (f doit tendre vers 0 à l'infini), d'où f(0).

  11. #10
    invite4ef352d8

    Re : Intégrale de sin(x)/x

    ouai il y aussi plusieurs méthodes avec Fubini (on calcule une certain intégral double dans les deux ordres possible, et on tombe d'un coté sur l'intégral que tu veux calculer et de l'autre sur quelquechose qu'on sait calculer...) mais je retrouve plus d'untégrales qui fonctionne...

    enfin la formule d'inversion c'est encore ce qu'il y de plus simple...

  12. #11
    MOHAMED_AIT_LH

    Re : Intégrale de sin(x)/x

    Bonsoir

    je suis nouveau sur ce site et je commence par contribuer à cette discussion:

    Ksilver a dit:

    on vérifie rapidement qu'elles sont définit est continu sur R+

    Il n'est pas facil de prouver rapidement que est continue en

    Toutefois , sa continuité sur ne pose pas un grand problème.

    Si cependant, tu as une méthode rapide pour prouver que est continue au point je te prie de me l'indiquer et merci .

  13. #12
    invitea3577cfd

    Re : Intégrale de sin(x)/x

    Salut,
    Cette intégrale se calcule avec le théorème des résidus.

    A+

  14. #13
    inviteaf1870ed

    Re : Intégrale de sin(x)/x

    Voir ici : http://fr.wikipedia.org/wiki/Int%C3%...e_de_Dirichlet trois autres méthodes, dont celle avec une Transformée de Laplace
    Voir également cette discussion : http://forums.futura-sciences.com/ma...ale-sinus.html qui donne la méthode avec une TF, et une égalité marrante

  15. #14
    invitea3577cfd

    Re : Intégrale de sin(x)/x

    Il faut que tu trouves un contour et que tu intègres sur celui ci.



    Il faut faire attention, au niveau du contour, à faire un petit détour autour de zéro car la fonction y possède un pôle. En gros, ton contour d'intégration sera un demi cercle avec un trou en zéro.

Discussions similaires

  1. intégrale de sin(x)*exp(x)
    Par ash117 dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 10/12/2007, 20h09
  2. Intégrale de Sin(x)
    Par invitee2f44b4d dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 23/10/2007, 11h04
  3. intégrale de (sin(x)/x).exp(i.x) ???
    Par invite51db672a dans le forum Mathématiques du supérieur
    Réponses: 10
    Dernier message: 14/04/2006, 16h23
  4. intégrale de sin(f(x))
    Par Vladzol dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 14/03/2006, 14h09
  5. Intégrale de Sin²(x)
    Par invite33c5f5bf dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 09/08/2004, 16h52