Un petit casse-tête - Page 4
Discussion fermée
Page 4 sur 5 PremièrePremière 4 DernièreDernière
Affichage des résultats 91 à 120 sur 148

Un petit casse-tête



  1. #91
    invitef591ed4b

    Re : Un petit casse-tête


    ------

    Pour toi, une preuve est un axiome, c'est tout. C'est naturel que tu ne captes pas pourquoi les gens justifient ces "axiomes", tu ne captes même pas ce qu'est une preuve.

    -----

  2. #92
    invite6b1a864b

    Re : Un petit casse-tête

    Alors commençons.
    1) les mathématiques sont une traduction des smétrie de la réalité. Ces symétries sont généralisés par des symboles/conceptes, des entités qui traduient par leur comportement le comportement observé des symétries...
    2) il y a une logique dans ces symétries, qui découle du fait que l'univers est cohérent, c'est à dire qu'il posséde lesdites symétries.
    3) vos mathématiques sont une série d'axiome... chaque série d'axiome entraine une structure qui sont les dévellopement logiques de ces axiomes.. en utilisant.. des symétries.. si a=1+2, a=3
    4) je pense que l'axiomatique et plus proche de la réalité quand elle prend en compte la persistance de chose, le fait que même à l'infine, on ne peut pas inventer ce qu'on veut, comme une place de cinéma supplémentaire, pour un invité qui n'existait pas avant...
    De même on ne peut pas dire que IN est en bijection avec 2IN...
    ça fait beau, c'est jolie, mais comme on est à l'infinie, c'est indémontrable...
    J'essaye juste de faire de "bonne" mathématique, qui collent mieux à la réalité.. et ça marche..

  3. #93
    invite6b1a864b

    Re : Un petit casse-tête

    C'est comme si tu dit, j'ai un infinie, je rajoute un et c'est toujours le même...
    Précisément on ignore ce qu'est l'infinie.. et vous vous vous permettez de considérer qu'ils sont tous équivalent.. donc ce qu'il fallait dire ce n'est pas "un ignorant par définition, ignore qu'il l'est", mais bien "celui qui sait n'ignore pas qu'il ne sait rien... "
    Sinon si j'ai un oeil fermé, c'est pour mieux voir dans le noir...(vous ne pensiez quand même pas que j'était vraiment un Pirate borgne ??)

  4. #94
    inviteeecca5b6

    Re : Un petit casse-tête

    Mais non tu laisse juste ton bon gros sens te guider, à dire tout et n'importe quoi...
    Si tu ne crois pas a l'infini, dans ce cas tu ne peut pas plus croire aux nombres irrationels (d'une part parce qu'ils faut une infinité de nombre rationels pour les écrire, d'autre part parce qu'ils ne se trouvent pas dans la nature), ni les complèxes (pas dans la nature, et racine(i) = -1, totale folie inimaginable !!)... Que penses-tu des entier négatifs ?? d'ou sort le fait que -1 * -1 = 1 ?
    T'as le droit de croire en rien de tout ca, mais alors creer ta propre théorie. Parce que la tu mélange les maths qu'on connait tous avec tes idées.
    Banir un axiome des maths, c'est banir toutes les maths...
    Donc, comme je t'ai deja dit, publie ton livre (qui risque d'etre tres volumineux (qui a dit barbant ???)) et fais nous signe...

  5. #95
    invite10c91cbe

    Re : Un petit casse-tête

    Un ignorant par définition, ignore ce qu'il est..
    Je la ressortirais celle là .. quoi que non.. à bien réflechir, c'est totalement faux..
    Sinon les voitures n'existeraient pas..
    Peut-être n'as tu pas compris le commentaire de BS . Ce qu'il a voulu dire, à mon avis, c'est "qu'un ignorant ignore qu'il est ignorant ". Ne rigole pas, on fait même des études là dessus (Les incompétents qui s'ignorent)

    One Eye Jack, si vous niez que N est en bijection avec 2N, alors vous niez tout bonnement l'existence de N. Votre approche revient à nier la réalité.

  6. #96
    invitef591ed4b

    Re : Un petit casse-tête

    Banir un axiome des maths, c'est banir toutes les maths...
    Mmm ptêt pas à ce point-là, je pense que les axiomes de base des maths sont ceux provenant de la logique adoptée. Refuser les axiomes d'une logique détruit les maths découlant de cette logique, mais il existe des maths venant d'autres logiques ...

    Le tout est de ne pas mélanger les différentes mathématiques qui sont naturellement contradictoires, ce que fait OEJ. Il essaie de faire des maths classiques alors qu'il n'adhère pas aux axiomes classiques. Il parle typiquement comme un intuitionniste pour qui refuser de travailler avec les infinis est justement un axiome. Mais ça il ne le sait pas.

  7. #97
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par Sephi
    Pour toi, une preuve est un axiome, c'est tout. C'est naturel que tu ne captes pas pourquoi les gens justifient ces "axiomes", tu ne captes même pas ce qu'est une preuve.
    ??? Pas du tout... !
    Effectivement je me suis trompé sur a^0... j'était déjà sur l'autre coté de l'explication... à un autre degrés.. j'expliquais (un peu vite) le fait que la bijection impossible à l'infinie correspond à l'impossible bijection entre a^0 et a et donc à la différence entre a^0 et a^1 qui correspond tout juste à l'impossible bijection entre (1/2^n) et (1/2^(n+1)) à l'infinie..
    Dans les deux cas je pensais qu'il résidait un "vide", c'est à dire un doute formelle invérifiable..
    J'avoue ...


    Simplement, ça ne signifie pas qu'à l'infinie la bijection soit valable..

  8. #98
    inviteeecca5b6

    Re : Un petit casse-tête

    Au fait, tu n'as fait qu'un an de prepa ? pourquoi pas la 2eme ?
    T'étais surement trop doué je pense... Personne ne te comprenait, mais viendra le jour ou sera créé le prix nobel mathematique rien que pour toi

  9. #99
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par eljeys
    Peut-être n'as tu pas compris le commentaire de BS . Ce qu'il a voulu dire, à mon avis, c'est "qu'un ignorant ignore qu'il est ignorant ". Ne rigole pas, on fait même des études là dessus (Les incompétents qui s'ignorent)

    One Eye Jack, si vous niez que N est en bijection avec 2N, alors vous niez tout bonnement l'existence de N. Votre approche revient à nier la réalité.
    Parce N est dans la réalité maintenant ? ce qui est dans la réalité, c'est la symétrie.. mais l'infinie lui est il dans la réalité ?
    Sinon je le répéte, un ignorant, n'ignore pas forcément qu'il ignore quelque chose.. sinon on ne ferait pas de math, puisqu'on ignorerait qu'on ignore que d'autre math reste à formaliser... (celle qu'on ignore encore)..
    et puis dans la réalité, on ne peut pas être simplement ignorant, on est toujours ignorant de quelque chose..

  10. #100
    invitef591ed4b

    Re : Un petit casse-tête

    Ne me dit pas que tu ne sais même pas ce qu'est une bijection ?

  11. #101
    inviteeecca5b6

    Re : Un petit casse-tête

    Citation Envoyé par Sephi
    Mmm ptêt pas à ce point-là, je pense que les axiomes de base des maths sont ceux provenant de la logique adoptée. Refuser les axiomes d'une logique détruit les maths découlant de cette logique, mais il existe des maths venant d'autres logiques ...
    Oui, je suis bien d'accord avec toi, mais le pauvre OEJ a deja assez de mal comme ca, ne compliquons en rien sa tache

  12. #102
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par Evil.Saien
    Au fait, tu n'as fait qu'un an de prepa ? pourquoi pas la 2eme ?
    T'étais surement trop doué je pense... Personne ne te comprenait, mais viendra le jour ou sera créé le prix nobel mathematique rien que pour toi
    C'est vrai .. j'étais deuxiéme.. et oui personne ne me comprenais...
    J'ai arrêté justement pour ça.. mais sinon... Je te félicite d'appuyé par la logique de ton argumentaire mathmatique si justement l'existence.. du "vide"... belle démonstration mathématique..
    Je regrette, mais combien il y a il de point dans un segment ?
    L'infinie ? alors si tout les infinis sont identique, tout les segments ont la même longueur ?

  13. #103
    invitef591ed4b

    Re : Un petit casse-tête

    On ne définit pas une longueur en comptant le nombre de points, c'est dingue comme tu te coules. Tous les segments de la droite réelle ont le même nombre de points, oui. La longueur, c'est autre chose.

    Et précisément, on dit que la droite réelle est continue si tout sous-ensemble de cette droite (donc les segments, si tu veux) ont une infinité de points. C'est le cas. La droite réelle est continue. A partir de la, la longueur provient de l'instauration d'une distance sur l'ensemble, etc ...

  14. #104
    invite10c91cbe

    Re : Un petit casse-tête

    One Eye Jack,

    C'est ignorant dans le sens "qui ne sait rien". Et là c'est vrai.
    Sinon, l'article proposé est sur les incompétents qui s'ignorent, c'est à dire des gens qui ne sont pas capable de se rendre compte de leur propres erreurs.
    ce qui est dans la réalité, c'est la symétrie..
    C'est une pétition de principe.

    Si tu veux rester cohérent avec ton approche, il faut que tu nies l'existence de tout ensemble infini, et donc par suite de N.
    Si tu ne nies pas l'existence mathématique de N, alors tu ne peux nier que N est en bijection avec 2N (la démonstration est d'ailleurs très simple).

  15. #105
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par Evil.Saien
    Oui, je suis bien d'accord avec toi, mais le pauvre OEJ a deja assez de mal comme ca, ne compliquons en rien sa tache
    bon ça va je me suis planté sur le a^0... bon ok ok ..

  16. #106
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par eljeys
    One Eye Jack,

    C'est ignorant dans le sens "qui ne sait rien". Et là c'est vrai.
    Sinon, l'article proposé est sur les incompétents qui s'ignorent, c'est à dire des gens qui ne sont pas capable de se rendre compte de leur propres erreurs.

    C'est une pétition de principe.

    Si tu veux rester cohérent avec ton approche, il faut que tu nies l'existence de tout ensemble infini, et donc par suite de N.
    Si tu ne nies pas l'existence mathématique de N, alors tu ne peux nier que N est en bijection avec 2N (la démonstration est d'ailleurs très simple).
    Le vide réside dans le fait que tu confond l'existence du concepte mathématique et de sa représentation..
    C'est tout la question de l'existence de l'information par rapport à son support.. l'objet de mon livre..

  17. #107
    invitef591ed4b

    Re : Un petit casse-tête

    et oui personne ne me comprenais...
    Ou bien tu ne comprenais personne.
    bon ça va je me suis planté sur le a^0... bon ok ok ..
    Bon allez, tu remontes de 5% dans mon estime, sur les 90% de perdus.

    Sinon jcrois que tu ne captes pas ce qu'est l'infini. Quand on parle de la droite réelle infinie, est-ce que ça veut dire que cet infini est atteint ? Cette droite contient une infinité de nombres de plus en plus grands quand on va loin, oui. Mais est-ce qu'on sait atteindre un nombre infini ?

  18. #108
    inviteeecca5b6

    Re : Un petit casse-tête

    Citation Envoyé par One Eye Jack
    C'est vrai .. j'étais deuxiéme.. et oui personne ne me comprenais...
    J'ai arrêté justement pour ça..
    Wouha ! j'avais deviné ta réponse ! D'un coté c'était pas très dur, a mon avis tu dois faire parti de cette classe:
    Citation Envoyé par Les incompétents qui s'ignorent
    Incompetent individuals, compared with their more competent peers, will dramatically overestimate their ability and performance relative to objective criteria.

  19. #109
    inviteab2b41c6

    Re : Un petit casse-tête

    Bon disons que le "par l'asburde", n'est pas une preuve formelle (au sens propre du terme)...
    Très drole.

    OEJ, tu es certainement un très bon vulgarisateur scientifique, mais tu ne maitrises pas les concepts formels et surtout leur fondement.

    La on ne sait plus ou ce post ca. Qu'elle était l'intincelle qui a tout faire flamber, et qui maintenant fait que ce fil n'a plus tellement de sens? Ca ne sert a rien à continuer visiblement de ce coté ci, et ce n'est plus tellement un débat mais plus des insultes de part et d'autres, et le sujet de départ est oublié....

    Un petit peu dommage de s'enteter je trouve...

  20. #110
    inviteeecca5b6

    Re : Un petit casse-tête

    Un dernier petit mot a propos de l'infini:
    personellement, j'aurais tendance a dire que c'est un peu une erreur de dire ... = oo, mais il faut interpréter ca comme une notation. Donc, le fait d'ecrire a + oo = ... ou 2 * oo = ... sont des expressions qui n'ont pas de sens !
    Les expressions qui ont un sens avec l'infini, ce sont seulement celles qui mettent en jeux des limites (donc les dérivées, les sommes, intégrales...)
    Quand on a lim(x->oo) x = oo et lim(x->oo)2x = oo = lim(x->oo)x alors ici l'infini prend tout son sens... A savoir un nombre infiniment grand !
    Imigine le nombre le plus grand possible, le plus grand des mathématiques, le plus grand. Notons-le G. Est-ce que 2G > G ? Ben non, sinon G est pas le plus grand ! Eh bien pour l'infini, c'est le meme concept, c'est pas un nombre a proprement dit, mais un concept, rien n'est plus grand, on ne l'atteint jamais, on peut seulement y tendre

  21. #111
    inviteab2b41c6

    Re : Un petit casse-tête

    Note qu'en analyse fonctionnelle par exemple, on pose que l'infini est un point comme les autres vérifiant certaines propriétés.
    Notamment oo*a=a*oo=signe de (a)*infini
    pour n'importe quel nombre réel avec signe (a)=1 si a positif -1 si négatif, et 0 si nul.(dans ce dernier cas, on pose que c'est 0)
    Et on pose également oo+oo=oo*oo=oo


    Donc en fait on peut faire des opérations "classiques" sur les infinis.

  22. #112
    inviteeecca5b6

    Re : Un petit casse-tête

    Oui, c'est un peu ce que j'ai dit...
    Note que tout ca c'est des notations, que oo + oo = oo et non a 2oo et oo*oo = oo non a oo^2 !
    Donc on le considère pas comme un nombre, mais on le symbolise par cette notation qui a des propriétes différentes que celle pour les nombres...

  23. #113
    invitef591ed4b

    Re : Un petit casse-tête

    Effectivement, l'infini n'est pas un élément appartenant à la droite réelle ... sauf si on considère la droite réelle complétée [-oo,+oo], ou si on fait de la géométrie projective etc ...

  24. #114
    inviteab2b41c6

    Re : Un petit casse-tête

    Citation Envoyé par Evil.Saien
    Oui, c'est un peu ce que j'ai dit...
    Note que tout ca c'est des notations, que oo + oo = oo et non a 2oo et oo*oo = oo non a oo^2 !
    Donc on le considère pas comme un nombre, mais on le symbolise par cette notation qui a des propriétes différentes que celle pour les nombres...
    Heu, si tu m'avais bien lu, tu verrais que si.
    L'infini n'est pas un nombre dans R, mais rien ne nous empeche de completer R pour prendre un symbole, disons s, qui vérifie toutes les propriétés de passage aux limites, et pour plus de commodité, on le note oo.

  25. #115
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par Evil.Saien
    Wouha ! j'avais deviné ta réponse ! D'un coté c'était pas très dur, a mon avis tu dois faire parti de cette classe:
    Eh bien là, non... c'est là où est le vide.. tout le monde peut se tromper.... les autres sont des cons qui se rassurent des qu'ils ont raisons...

  26. #116
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par Evil.Saien
    Un dernier petit mot a propos de l'infini:
    personellement, j'aurais tendance a dire que c'est un peu une erreur de dire ... = oo, mais il faut interpréter ca comme une notation. Donc, le fait d'ecrire a + oo = ... ou 2 * oo = ... sont des expressions qui n'ont pas de sens !
    Les expressions qui ont un sens avec l'infini, ce sont seulement celles qui mettent en jeux des limites (donc les dérivées, les sommes, intégrales...)
    Quand on a lim(x->oo) x = oo et lim(x->oo)2x = oo = lim(x->oo)x alors ici l'infini prend tout son sens... A savoir un nombre infiniment grand !
    Imigine le nombre le plus grand possible, le plus grand des mathématiques, le plus grand. Notons-le G. Est-ce que 2G > G ? Ben non, sinon G est pas le plus grand ! Eh bien pour l'infini, c'est le meme concept, c'est pas un nombre a proprement dit, mais un concept, rien n'est plus grand, on ne l'atteint jamais, on peut seulement y tendre
    ah enfin les bonnes questions...

  27. #117
    invite6b1a864b

    Re : Un petit casse-tête

    Citation Envoyé par Quinto
    Très drole.

    OEJ, tu es certainement un très bon vulgarisateur scientifique, mais tu ne maitrises pas les concepts formels et surtout leur fondement.

    La on ne sait plus ou ce post ca. Qu'elle était l'intincelle qui a tout faire flamber, et qui maintenant fait que ce fil n'a plus tellement de sens? Ca ne sert a rien à continuer visiblement de ce coté ci, et ce n'est plus tellement un débat mais plus des insultes de part et d'autres, et le sujet de départ est oublié....

    Un petit peu dommage de s'enteter je trouve...
    Moi je suis désolé, ma théorie est entiérement cohérente...
    L'information n'existe pas indépendamment du support..
    Les symétries qui décrivent la réalité sont reproduisibles en symbole car elle correspondent au symétrie des symboles.. les mathématiques sont justement la forme de ces symétrie, dans le fond.
    Tout va trés bien... La cohérence qui surgit de tout ça, qui permet de dire que les raisonnements par l'absurde marche, découle du faite que toute la réalité est entiérement cohérente, mais en sortant au moins une fois du cadre de la déduction formelle pure.. par exemple
    dire que
    a^3=a*a*a, ça vient du fait qu'on écrit trois fois a.. c'est formelle et pure, c'est même algorythmique... ça ne dépend que de la définition de la symétrie représenter par "3".. la définition du 3 n'est un axiome que pour lui même..

    Mais le raisonnement par l'absurde c'est, obtenir une proposition à partir de la proposition à vérifier qui est en contradition avec d'autre proposition qui découle des axiomes définit comme vrai.. cela ne dit pas si l'ensemble des axiomes est vrai..

    En plus à la base moi, j'ai insulté personne.. je n'ai fait que me défendre....

  28. #118
    inviteeecca5b6

    Re : Un petit casse-tête

    Citation Envoyé par Quinto
    Heu, si tu m'avais bien lu, tu verrais que si.
    L'infini n'est pas un nombre dans R, mais rien ne nous empeche de completer R pour prendre un symbole, disons s, qui vérifie toutes les propriétés de passage aux limites, et pour plus de commodité, on le note oo.
    Ah bon ! Alors que donne oo - oo ? oo / oo ?
    On est d'accord, oo est un symbole qui évite de réécrire a chaque fois lim(x-> blablabla...
    Ensuite on peut utiliser les propriétés sur les limites, le manipuler presque comme un nombre, mais ca ne reste qu'un symbole conviens-en !

    ah enfin les bonnes questions...
    Enfin c'était plus une tentative d'éxplication que des questions

  29. #119
    inviteeecca5b6

    Re : Un petit casse-tête

    Citation Envoyé par One Eye Jack
    Mais le raisonnement par l'absurde c'est, obtenir une proposition à partir de la proposition à vérifier qui est en contradition avec d'autre proposition qui découle des axiomes définit comme vrai.. cela ne dit pas si l'ensemble des axiomes est vrai..
    A croire que tu fais exprès de mettre tant de mauvaise fois !
    On est tous d'accord ici pour dire qu'un axiome ne se démontre pas ! On ne peut pas le prouver, pas analytiquement en tout cas, juste selon notre intuition... On te l'a repeté deja x fois... Une démonstration par recurence évidemment marche seulement si on considère les hypothèses de départ comme vraies...
    Mais nous on attend qu'une chose, que tu sortes un contre exemple qui contrerai un des axiomes des mathématiques...

  30. #120
    inviteab2b41c6

    Re : Un petit casse-tête

    Ah bon ! Alors que donne oo - oo ? oo / oo ?
    Qui a dit qu'ils étaient définis?
    On perd justement la structure de corps, mais ca ne change rien.
    Tu te limites dans tes pensées à conserver cette propriété dont on peut en fait se passer (dans le cadre dans lequel je parle qui est l'analyse fonctionnelle)

Page 4 sur 5 PremièrePremière 4 DernièreDernière

Discussions similaires

  1. petit casse tête de chimiste
    Par invite240ac937 dans le forum Chimie
    Réponses: 8
    Dernier message: 06/06/2005, 17h44
  2. Petit Casse-tête sympa
    Par inviteaeeb6d8b dans le forum Science ludique : la science en s'amusant
    Réponses: 3
    Dernier message: 24/03/2005, 20h21
  3. petit casse tête fonction ln
    Par inviteeba7fcab dans le forum Mathématiques du supérieur
    Réponses: 11
    Dernier message: 10/03/2005, 20h16
  4. petit casse tete...
    Par invite240ac937 dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 24/11/2004, 19h11
  5. Vous parliez de casse tête ? Equa diff vraiment casse tete
    Par inviteeecca5b6 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 19/11/2004, 15h59