Je ne sais pas répondre pour l'instant, je n'ai pas abordé l'aspect énergétique (et déjà rien qu'à y réfléchir dans ma tête je trouve ça assez bordélique, beaucoup de conflits entre l'énergie mécanique classique, l'énergie de la relativité restreinte qui n'est que masse+cinétique si il n'y a pas de champ d'interaction et l'énergie de la relativité générale, qui localement doit correspondre à celle de la restreinte, mais globalement doit reproduire un truc qui colle avec l'énergie mécanique classique en champ faible)
Aucun a priori... c'est juste un bête paramètre pour identifier les géodésiques passant par un même évènement (il en faut 3 au total quand on est en 3+1, un seul suffit en 1+1), comme on peut en inventer des tas d'autres. C'est pareil pour K, pas de sens physique a priori. Le fait qu'on puisse dans certains particuliers (chute libre culminante) relier L ou K à la valeur de la culmination ne dit rien sur L ou K en général (en fait peu importe la forme du "machin" qui identifie, K ou L ou N... du moment qu'il est constant le long de la géodésique, si c'est une géodésique avec culmination, on peut forcément y relier rmax).Quel sens physique donnerais-tu à L?
Devant le fait que l'expression de dr/dt satisfait l'équation des géodésiques, et qu'en plus elle décrit l'ensemble des géodésiques, le sens physique de K ou L n'est pas d'une importance capitale.
un cas mathématiquement proche est la position du "punctum remotum" en fonction de la vergence de l'oeil au repos. Pour un oeil normal (image nette à l'infini au repos, possibilité de voir net au minimum à une dizaine de centimètres en accommodant), le punctum remotum est à l'infini, pour un oeil myope (image nette à une distance finie au repos, impossible de voir net à l'infini, possibilité de voir net au minimum à quelques centimètres en accommodant), le punctum remotum est à une distance finie, pour un oeil hypermétrope (pas d'image nette au repos, mais possibilité de voir net à l'infini et possibilité de voir net au minimum à quelques dizaines de centimètre ou quelques mètres en accommodant), le punctum remotum est à une distance négative (derrière l'oeil). En fait un objet virtuel situé derrière formerait une image réelle sur la rétine de l'oeil hypermétrope au repos, d'ailleurs c'est ce que fabrique une lentille de lunette pour hypermétrope à partir d'un objet réel (se référer à des cours d'optique géométrique pour comprendre tout ça). On a une grandeur qui varie continument de l'oeil myope à l'oeil hypermétrope en passant par l'oeil normal, et pendant qu'elle varie, le punctum remotum s'éloigne, diverge, puis "revient par derrière", dans les négatifs, un peu comme -1/x quand on passe x=0 en augmentant x... Dans ce sens, plus loin que +infini, c'est -infini et les nombres négatifs. Même chose avec la température, on peut définir dans des cas très particuliers, des températures absolues négatives, qui sont en fait plus chaudes qu'une température absolue arbitrairement positive (il faut se rappeler que la température est liée aux statistiques de populations des états et qu'une inversion de population donne la température opposée), en fait il faut travailler avec 1/T pour que ça fasse sens.Envoyé par mailou
Du coup, si rmax est négatif, cela signifie grosso-modo que le dr/dt s'annule pour r "plus grand que l'infini", "donc" négatif. C'est plus logique en réfléchissant avec 1/r qui doit devenir plus petit que 0, donc négatif...
Mais bon, peu importe, comme déjà dit, K n'est qu'un paramètre et qu'il soit en relation avec rmax dans le cas avec culmination ne doit pas empêcher de s'en servir dans les autres cas où rmax n'a pas de sens.
J'ai l'intuition (et je compte bien le démontrer) qu'il s'agit de géodésiques de genre espace qui viennent de l'infini de la région I (r infini donc), qui plongent sous l'horizon, "descendent" jusqu'à ce que r=1/K, puis "remontent", ressortent par l'autre horizon et partent vers l'infini de la région III. Prends une géodésique de chute libre avec culmination qui fait IV-I-II dans un Kruskal, et fait la tourner de 90° autour du centre X=T=0, ça donne un truc qui fait I-II-III (ou I-IV-III, ça dépend du signe de dr/dt) avec un r minimal (au lieu de maximal) qui doit avoir l'allure d'une telle géodésique de genre espace (et peut-être pas seulement l'allure, si ça se trouve c'est directement la géodésique, ça ce serait marrant).- Pour 1/Rs<K<oo on a 0<Rmax<Rs, soit des objets qui chutent depuis l’intérieur du TN. A nouveau, ce qui est de genre espace en (r;t) de Schw devient de genre temps en region II.
On pose (oui, oui, c'est du bricolage sur mesure pour avoir le changement de genre quand L change de signe).peux tu preciser le changement de variable de K vers L stp ? mci
m@ch3
-----